Representations and processes: What role for multivariate methods in cognitive neuroscience?

Davide Coraci


Abstract: The significance of neuroscientific findings for the analysis of central problems in cognitive science has long been a matter of debate. Recent developments in cognitive neuroscience have reignited this discussion, especially with regard to the study of cognitive representations and cognitive processes. The present paper focuses on multivariate analyses, a class of neuroscientific methods that promises to shed new light on the neural bases of cognitive representations. Multivariate approaches are both powerful and increasingly used. Yet, we argue that their successful application in neuroscience requires significant theoretical and methodological clarification. After providing a preliminary assessment of the pros and cons of multivariate methods, we claim that their successful application crucially depends on how we conceptualize the relationships between representations, cognitive processes, and neural data, in other words, on the cognitive ontology we use to describe the human mind. Our discussion also highlights some general strengths and weaknesses of neuroscientific contributions to the program of classical cognitive science.

Keywords: Cognitive Process; fMRI; Multivariate Analysis; Marr’s Three Levels of Analysis; Cognitive Ontology


Rappresentazioni e processi: quale ruolo per i metodi multivariati nelle neuroscienze cognitive?

Riassunto: La rilevanza dei risultati neuroscientifici per quanto riguarda i problemi centrali delle scienze cognitive è motivo di discussione. Recenti sviluppi nelle neuroscienze cognitive hanno rianimato tale dibattito, in particolare rispetto allo studio delle rappresentazioni e dei processi cognitivi. Il presente articolo si focalizza sull’analisi multivariata, un insieme di metodi neuroscientifici che si promettono di studiare le basi neurali delle rappresentazioni cognitive. Nonostante le potenzialità e l’uso pervasivo degli approcci multivariati, in questo lavoro sosteniamo che prima di poter valutare il loro effettivo contributo nello studio delle rappresentazioni cognitive sia necessaria una chiarificazione teorica e metodologica. Dopo una discussione preliminare dei vantaggi e degli svantaggi dei metodi multivariati, evidenziamo come una loro efficace applicazione dipenda in maniera sostanziale da come viene intesa la relazione tra rappresentazioni, processi cognitivi e dati neurali o, in altre parole, dall’ontologia cognitiva che impieghiamo per descrivere la mente umana. Il presente lavoro affronta inoltre i generali punti di forza e gli elementi critici rispetto al contributo della ricerca neuroscientifica nel programma delle scienze cognitive classiche.

Parole chiave: Cognitive Process; fMRI; Multivariate Analysis; Marr’s Three Levels of Analysis; Cognitive Ontology

Parole chiave

cognitive process; fMRI; multivariate analysis; Marr’s three levels of analysis; cognitive ontology

Full Text


Riferimenti bibliografici

BALKENIUS, C., GÄRDENFORS, P. (2016). Spaces in the brain: From neurons to meanings. In: «Frontiers in Psychology», vol. VI, Art. Nr. 1820 – doi: 10.3389/fpsyg.2016.01820.

BECHTEL, W., ABRAHAMSEN, A., GRAHAM, G. (2017). The life of cognitive science. In: W. BECHTEL, G. GRAHAM (eds.), A companion to cognitive science, Blackwell, London/New York, pp. 1-104.

BODEN, M. (2006). Mind as machine: A history of cognitive science, Oxford University Press, Oxford.

BOTVINIK-NEZER, R., HOLZMEISTER, F., CAMERER, C.F., DREBER, A. ET ALII (2020). Variability in the analysis of a single neuroimaging dataset by many teams. In: «Nature» vol. DLXXXII, n. 7810, pp. 84-88.

BRACCI, S., DE BEECK, H.O. (2016). Dissociations and associations between shape and category representations in the two visual pathways. In: «Journal of Neuroscience», vol. XXXVI, n. 2, pp. 432-444.

CHALMERS, D. (1995). On implementing a computation. In: «Minds and Machines», vol. IV, n. 4, pp. 391-402.

CHRISLEY, R.L. (1995). Why everything doesn’t realize every computation. In: «Minds and Machines», vol. IV, n. 4, pp. 403-430.

DAVIS, T., LAROCQUE, K.F., MUMFORD, J.A., NORMAN, K.A., WAGNER, A.D., POLDRACK, R.A. (2014). What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis. In: «Neuroimage», vol. XCVII, pp. 271-283.

DAVIS, T., POLDRACK R.A. (2013). Measuring neural representations with fMRI: Practices and pitfalls. In: «Annals of the New York Academy of Sciences», vol. MCCXCVI, n. 1, pp. 108-134.

DAVIS, T., POLDRACK, R.A. (2014). Quantifying the internal structure of categories using a neural typicality measure. In: «Cerebral Cortex», vol. XXIV, n. 7, pp. 1720-1737.

DU, C., LI, J., HUANG, L., HE, H. (2019). Brain encoding and decoding in fMRI with bidirectional deep generative models. In: «Engineering», vol. V, n. 5, pp. 948-953.

EICH, T., PARKER, D., GAZES, Y., RAZLIGHI, Q., HABECK, C., STERN, Y. (2020). Towards an ontology of cognitive processes and their neural substrates: A structural equation modeling approach. In: «PLoS ONE», vol. XV, n. 2, Art.Nr. e0228167 – doi: 10.1371/journal.pone.0228167.

FIGDOR, C. (2011). Semantics and metaphysics in informatics: Toward an ontology of tasks. In: «Topics in Cognitive Science», vol. III, n. 2, pp. 222-226.

FODOR, J.A. (1975). The language of thought, Harvard University Press, Harvard.

FODOR, J.A. (1981). The mind-body problem. In: «Scientific American», vol. CCXLIV, n. 1, pp. 114-125.

FODOR, J.A. (1983). The modularity of mind: An essay on faculty psychology, MIT Press, Cambridge (MA).

FRANCKEN, J.C., SLORS, M. (2014). From commonsense to science, and back: The use of cognitive concepts in neuroscience. In: «Consciousness and Cognition», vol. XXIX, pp. 248-258.

HAYNES, J.D., REES, G. (2005). Predicting the stream of consciousness from activity in human visual cortex. In: «Current Biology», vol. XV, n. 14, pp. 1301-1307.

KAY, K.N., NASELARIS, T., PRENGER, T., GALLANT, J.L. (2008). Identifying natural images from human brain activity. In: «Nature», vol. CDLII, n. 7185, pp. 352-355.

KLEIN, C. (2012). Cognitive ontology and region-versus network-oriented analyses. In: «Philosophy of Science», vol. LXXIX, n. 5, pp. 952-960.

KRIEGESKORTE, N. (2011). Pattern-information analysis: From stimulus decoding to computational-model testing. In: «Neuroimage», vol. LVI, n. 2, pp. 411-421.

KRIEGESKORTE, N., BANDETTINI, P.A. (2007). Analyzing for information, not activation, to exploit high-resolution fMRI. In: «Neuroimage», vol. XXXVIII, n. 4, pp. 649-662.

KRIEGESKORTE, N., DOUGLAS, P.K. (2018). Cognitive computational neuroscience. In: «Nature Neuroscience», vol. XXI, n. 9, pp. 1148-1160.

KRIEGESKORTE, N., KIEVIT, R.A. (2013). Representational geometry: Integrating cognition, computation, and the brain. In: «Trends in Cognitive Sciences», vol. XVII, n. 8, pp. 401-412.

KRIEGESKORTE, N., MUR, M., BANDETTINI, P.A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. In: «Frontiers in Systems Neuroscience», vol. II, n. 4 – doi: 10.3389/neuro.06.004.2008.

LANCASTER, J.L., LAIRD, A.R., EICKHOFF, S.B., MARTINEZ, M.J., FOX, P.M., FOX, P.T. (2012). Automated regional behavioral analysis for human brain images. In: «Frontiers in Neuroinformatics», vol. VI, Art. Nr. 23 - doi: 10.3389/fninf.2012.00023.

MARR, D. (1982). Vision: A computational investigation into the human representation and processing of visual information, Henry Holt and Co., New York.

NASELARIS, T., KAY, K.N., NISHIMOTO, S., GALLANT, J.L. (2011). Encoding and decoding in fMRI. In: «Neuroimage», vol. LVI, pp. 400-410.

NORMAN, K.A., POLYN, S.M., DETRE, G.J., HAXBY, J.V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. In: «Trends in Cognitive Sciences», vol. X, n. 9, pp. 424-430.

NÚÑEZ, R., ALLEN, M., GAO, R., RIGOLI, C.M., RELAFORD-DOYLE, J., SEMENUKS, A. (2019). What happened to cognitive science?. In: «Nature Human Behaviour», vol. III, n. 8, pp. 782-791.

PICCININI, G., MALEY, C. (2010). Computation in physical systems. In: E.N. ZALTA (ed.), The Stanford encyclopedia of philosophy – URL:

PICCININI, G., SHAGRIR, O. (2014). Foundations of computational neuroscience. In: «Current Opinion in Neurobiology», vol. XXV, pp. 25-30.

POLDRACK, R.A. (2006). Can cognitive processes be inferred from neuroimaging data?. In: «Trends in Cognitive Sciences», vol. X, n. 2, pp. 59-63.

POLDRACK, R.A. (2010). Mapping mental function to brain structure: How can cognitive neuroimaging succeed?. In: «Perspectives on Psychological Science», vol. V, n. 6, pp. 753-761.

POLDRACK, R.A. (2021). The physics of representation. In: «Synthese», vol. CXCIX, n. 1, pp. 1307-1325.

POLDRACK, R.A., KITTUR, A., KALAR, D., MILLER, E., SEPPA, C., GIL, Y.D., PARKER, S., SABB, F.W., BILDER, R.M. (2011). The cognitive atlas: Toward a knowledge foundation for cognitive neuroscience. In: «Frontiers in Neuroinformatics», vol. V, Art. Nr. 17 – doi: 10.3389/fninf.2011.00017.

PRICE, C.J., FRISTON, K.J. (2005). Functional ontologies for cognition: The systematic definition of structure and function. In: «Cognitive Neuropsychology», vol. XXII, n. 3-4, pp. 262-275.

PUTNAM, H. (1967). Psychophysical predicates. In: W. CAPITAN, D. MERRILL (eds), Art, mind, and religion, University of Pittsburgh Press, Pittsburgh, pp. 37-48.

RITCHIE, J.B., KAPLAN, D.M., KLEIN, C. (2019). Decoding the brain: Neural representation and the limits of multivariate pattern analysis in cognitive neuroscience. In: «British Journal of Philosophy of Science», vol. LXX, n. 2, pp. 581-607.

ROSKIES, A.L. (2021). Representational similarity analysis in neuroimaging: Proxy vehicles and provisional representations. In: «Synthese», vol. CXCIX, n. 40, pp. 5917-5935.

SHEPARD, R.N. (1968). Reviewed work: Cognitive psychology by Ulric Neisser. In: «The American Journal of Psychology», vol. LXXXI, n. 2, pp. 285-289.

SHEPARD, R.N., CHIPMAN, S. (1970). Second-order isomorphism of internal representations: Shapes of states. In: «Cognitive psychology», vol. I, n. 1, pp. 1-17.

ST-YVES, G., NASELARIS, T. (2018). The feature-weighted receptive field: An interpretable encoding model for complex feature spaces. In: «Neuroimage», vol. CLXXX, pp. 188-202.

TURING, A. (1936). On computable numbers, with an application to the Entscheidungsproblem. In: «Proceedings of the London Mathematical Society», vol. XLII, pp. 230-265.

TURING, A. (1950). Computing machinery and intelligence. In: «Mind», vol. LIX, n. 236, pp. 433-460.

TURNER, J.A., LAIRD, A.R. (2012). The cognitive paradigm ontology: Design and application. In: «Neuroinformatics», vol. X, n. 1, pp. 57-66.

VIOLA, M. (2017). Carving mind at brain’s joints. The debate on cognitive ontology. In: «Phenomenology and Mind», vol. XII, pp. 162-172.


Copyright (c) 2022 Davide Coraci

URLdella licenza:

Rivista internazionale di Filosofia e Psicologia - ISSN: 2039-4667 (print) - E-ISSN: 2239-2629 (online)

Registrazione al Tribunale di Milano n. 634 del 26-11-2010 - Direttore Responsabile: Aurelia Delfino

Web provider Aruba spa - Loc. Palazzetto, 4 - 52011 Bibbiena (AR) - P.IVA 01573850516 - C.F. e R.I./AR 04552920482

Licenza Creative Commons
Dove non diversamente specificato, i contenuti di Rivista Internazionale di Filosofia e Psicologia sono distribuiti con Licenza Creative Commons Attribuzione 4.0 Internazionale.