The “cognitive neuroscience revolution” is not a (Kuhnian) revolution. Evidence from scientometrics

Eugenio Petrovich, Marco Viola


Abstract: Fueled by the rapid development of neuroscientific tools and techniques, some scholars consider the shift from traditional cognitive psychology toward cognitive neuroscience to be a revolution (most notably Boone and Piccinini). However, the term “revolution” in philosophy of science can easily be construed as involving a paradigm shift in the sense of Kuhn’s The Structure of Scientific Revolutions. Is a Kuhnian account sound in the case at hand? To answer this question, we consider heuristic indicators of two features of paradigm shifts: the incommensurability of ontologies; and a gap between scientific communities. Based on our evidence, we argue that no revolution has occurred (at least, not yet).

Keywords: Cognitive Neuroscience; Cognitive Psychology; Philosophy of Science; Thomas Kuhn; Scientometrics


La “rivoluzione delle neuroscienze cognitive” non è una rivoluzione (in senso kuhniano). Evidenze scientometriche

Riassunto: Complice il rapido sviluppo di strumenti e tecniche in neuroscienze, alcuni studiosi (in particolare Boone e Piccinini) intendono il passaggio dalla psicologia cognitiva classica alla neuroscienza cognitiva nei termini di una rivoluzione. Tuttavia, il termine ‘rivoluzione’ in filosofia della scienza è strettamente associato alla nozione di successione di paradigmi esposta da Kuhn ne La struttura delle rivoluzioni scientifiche. Obiettivo di questo lavoro è capire se effettivamente la concezione kuhniana offra una corretta descrizione di questa dinamica storica. In particolare, prenderemo in esame due indicatori euristici delle rivoluzioni kuhniane: l’incommensurabilità ontologica trai due paradigmi e la diversa composizione demografica delle comunità scientifiche. Sulla base delle evidenze scientometriche che prenderemo in esame, affermeremo che non è avvenuta nessuna rivoluzione (almeno per ora).

Parole chiave: Neuroscienze cognitive; Psicologia cognitiva; Filosofia della scienza; Thomas Kuhn; Scientometria

Parole chiave

Cognitive Neuroscience; Cognitive Psychology; Philosophy of Science; Thomas Kuhn; Scientometrics

Full Text


Riferimenti bibliografici

AMBROSINO, A., CEDRINI, M., DAVIS, J. B., FIORI, S., GUERZONI, M., NUCCIO, M. (2018). What topic modeling could reveal about the evolution of economics. In: «Journal of Economic Methodology», vol. XXV, n. 4, pp. 329-348.

ANDERSON, M.L. (2014). After phrenology: Neural reuse and the interactive brain, MIT Press, Cambridge (MA).

ANDERSON, M.L. (2015). Mining the brain for a new taxonomy of the mind. In: «Philosophy Compass», vol. X, n. 1, pp. 68-77.

BARRETT, L.F., SATPUTE, A. (2013) Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. In: «Current Opinion in Neurobiology», vol. XXIII, n. 3, pp. 361-372.

BARWICH, A.-S., XU, L. (2022). Where molecular science meets perfumery: A behind the scenes look at SCAPE microscopy and its theoretical impact on current olfaction. In: J. BICKLE, C. CRAVER, A.-S. BARWICH (eds.), The tools of neuroscience experiment. Philosophical and scientific perspectives, Routledge, London/New York, pp. 83-116.

BECHTEL, W. (2008). Mental mechanisms: Philosophical perspectives on cognitive neuroscience, Routledge, London/New York.

BECHTEL, W., ABRAHAMSEN, A. (2005). Explanation: A mechanist alternative. In: «Studies in History and Philosophy of Science - Part C», vol. XXXVI, n. 2, pp. 421-441.

BECHTEL, W., ABRAHAMSEN, A., GRAHAM, G. (1998). The life of cognitive science. In: W. BECHTEL, G. GRAHAM (eds.), A companion to cognitive science, Blackwell, London/New York, pp. 2-104.

BICKLE, J. (2006). Reducing mind to molecular pathways: Explicating the reductionism implicit in current cellular and molecular neuroscience. In: «Synthese», vol. CLI, n. 3, pp. 411-434.

BICKLE, J. (2016). Revolutions in neuroscience: Tool development. In: «Frontiers in Systems Neuroscience», vol. X, 2016, Art.Nr. 24 – doi: 10.3389/fnsys.2016.00024.

BOONE, W., PICCININI, G. (2016). The cognitive neuroscience revolution. In: «Synthese», vol. CXCIII, n. 5, pp. 1509-1534.

BURNSTON, D.C. (forthcoming). Getting over atomism: Functional decomposition in complex neural systems. In: «The British Journal for the Philosophy of Science».

CARANDINI, M. (2012). From circuits to behavior: A bridge too far. In: «Nature Neuroscience», vol. XV, n. 4, pp. 507-509.

CHURCHLAND, P.M. (1992). A neurocomputational perspective: The nature of mind and the structure of science, MIT press, Cambridge (MA).

COLTHEART, M. (2006). What has functional neuroimaging told us about the mind (so far)?. In: «Cortex», vol. XLII, n. 3, pp. 323-331.

COWEN, A.S., KELTNER, D. (2021). Semantic space theory: A computational approach to emotion. In: «Trends in Cognitive Sciences», vol. XXV, n. 2, pp. 124-136.

CUMMINS, R. (1983). The nature of psychological explanation, MIT Press, Cambridge (MA).

DEWHURST, J. (2021). Folk psychological and neurocognitive ontologies. In: F. CALZAVARINI, M. VIOLA (eds.), Neural mechanisms, Springer, Cham, pp. 311-334.

FODOR, J.A. (1999). Let your brain alone. In: «London Review of Books», n. XXI, n. 10, 1999, pp. 68-69.

FRANCKEN, J., SLORS, M. (2018). Neuroscience and everyday life: Facing the translation problem. In: «Brain and Cognition», vol. CXX, pp. 67-74.

FRANCKEN, J.C., SLORS, M., CRAVER, C.F. (unpublished manuscript). Cognitive ontology and the search for neural mechanisms: Three foundational problems, available at

GLENNAN, S.S. (1996). Mechanisms and the nature of causation. In: «Erkenntnis», vol. XLIV, n. 1, pp. 49-71.

HARLEY, T.A. (2012). Why the earth is almost flat: Imaging and the death of cognitive psychology. In: «Cortex», vol. XLVIII, n. 10, pp. 1371-1372.

HENSON, R. (2005). What can functional neuroimaging tell the experimental psychologist?. In: «The Quarterly Journal of Experimental Psychology - Section A», vol. LVIII, n. 2, pp. 193-233.

HOCHSTEIN, E. (2019). How metaphysical commitments shape the study of psychological mechanisms. In: «Theory and Psychology», vol. XXIX, n. 5, pp. 579-600.

JANSSEN, A., KLEIN, C., SLORS, M. (2017). What is a cognitive ontology, anyway? In: «Philosophical Explorations», vol. XX, n. 2, pp. 123-128.

KAPLAN, D.M. (2011). Explanation and description in computational neuroscience. In: «Synthese», vol. CLXXXIII, n. 3, pp. 339-373.

KRAKAUER, J.W., GHAZANFAR, A.A., GOMEZ-MARTIN, A., MACLVER, M.A., POEPPER, D. (2017). Neuroscience needs behavior: Correcting a reductionist bias. In: «Neuron», vol. XCIII, n. 3, pp. 480-490.

KREUZMAN, H. (2001). A co-citation analysis of representative authors in philosophy: Examining the relationship between epistemologists and philosophers of science. In: «Scientometrics», vol. LI, n. 3, pp. 525-539.

KRIEGESKORTE, N., DOUGLAS, P.K. (2018). Cognitive computational neuroscience. In: «Nature Neuroscience», vol. XXI, n. 9, pp. 1148-1160.

KUHN, T.S. (1969). The structure of scientific revolutions (1962), Chicago University Press, Chicago.

LAUDAN, L. (1977). Progress and its problems, University of California Press, Berkeley (CA).

LEGRENZI, P., UMILTÀ, C. (2011). Neuromania: On the limits of brain science, Oxford University Press, Oxford/New York.

LEYDESDORFF, L., HAMMARFELT, B., SALAH, A. (2011). The structure of the Arts & Humanities Citation Index: A mapping on the basis of aggregated citations among 1,157 journals. In: «Journal of the American Society for Information Science and Technology», vol. LXII, n. 12, pp. 2414-2426.

LEYDESDORFF, L., RAFOLS, I. (2009). A global map of science based on the ISI subject categories. In: «Journal of the American Society for Information Science and Technology», vol. LX, n. 2, pp. 348-362.

LOOSEMORE, M., HARLEY, T.A., (2010). Brains and minds: On the usefulness of localization data to cognitive psychology. In: S.J.E. HANSON, M.E. BUNZL (2010). Foundational issues in human brain mapping, MIT Press, Cambridge (MA), pp. 217-240.

MACHAMER, P., DARDEN, L., CRAVER, C.F. (2000). Thinking about mechanisms. In: «Philosophy of Science», vol. LXVII, n. 1, pp. 1-25.

MARR, D. (1982). Vision. A computational investigation into the human representation and processing of visual information, W.H. Freeman & Co, San Francisco.

MERTON, R.K. (1974). The sociology of science: Theoretical and empirical investigations, University of Chicago Press, Chicago.

MIŁKOWSKI, M. (2018). From computer metaphor to computational modeling: the evolution of computationalism. In: «Minds and Machines», vol. XXVIII, n. 3, pp. 515-541.

OPPENHEIM, P., PUTNAM, H. (1958). Unity of science as a working hypothesis. In: H. FEIGL, M. SCRIVEN, G. MAXWELL (eds.), Concepts, theories, and the mind-body problem, Minnesota Studies in the Philosophy of Science, vol. II, Minnesota University Press, Minneapolis, pp. 3-36.

PAGE, M.P. (2006) What can’t functional neuroimaging tell the cognitive psychologist?. In: «Cortex», vol. XLII, n. 3, pp. 428-443.

PETROVICH, E. (2020). Science mapping. In: B. HJØRKLAND, C. GNOLI (eds.), ISKO. Encyclopedia of knowledge organization, available at URL: cyclo/science_mapping.

PICCININI, G., CRAVER, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. In: «Synthese», vol. CLXXXIII, n. 3, pp. 283-311.

PLANCK, M. (1950) Scientific autobiography and other papers, Philosophical Library, New York.

POLDRACK, R.A. (2010). Mapping mental function to brain structure: How can cognitive neuroimaging succeed?. In: «Perspectives on Psychological Science», vol. V, n. 6, pp. 753-761.

POLDRACK, R.A., YARKONI, T. (2016). From brain maps to cognitive ontologies: Informatics and the search for mental structure. In: «Annual Review of Psychology», vol. LXVII, pp. 587-612.

PUTNAM, H. (1975). Philosophy and our mental life. In: H. PUTNAM, Mind, language, and reality, Cambridge University Press, Cambridge, pp. 291-303.

SHALLICE, T. (2009). The declining influence of cognitive theorising: Are the causes intellectual or socio-political?. In: «Psychologica Belgica», vol. XLIX, n. 2-3, pp. 73-84.

SILBERSTEIN, M. (2021). Constraints on localization and decomposition as explanatory strategies in the biological sciences 2.0. In: F. CALZAVARINI, M. VIOLA (eds.), Neural mechanisms, Springer, Cham, pp. 363-393.

SMALL, H. (2003). Paradigms, citations, and maps of science: A personal history. In: «Journal of the American Society for Informatization of Science and Technology», vol. LIV, n. 5, pp. 394-399.

SUGIMOTO, C.R., LARIVIÈRE, V. (2018). Measuring re-search: What everyone needs to know, Oxford University Press, Oxford.

SUGIMOTO, C.R., WEINGART, S. (2015). The kaleidoscope of disciplinarity. In: «Journal of Documentation», vol. LXXI, n. 4, pp. 775-794.

SULLIVAN, J.A. (2017). Coordinated pluralism as a means to facilitate integrative taxonomies of cognition. In: «Philosophical Explorations», vol. XX, n. 2, pp. 129-145.

TAHAMTAN, I., BORNMANN, L. (2019). What do citation counts measure? An updated review of studies on citations in scientific documents published between 2006 and 2018. In: «Scientometrics», vol. CXXI, n. 3, pp. 1635-1684.

TRAAG, V.A., WALTMAN, L., VAN ECK, N.J. (2019). From Louvain to Leiden: Guaranteeing well-connected communities. In: «Scientific Reports», vol. IX, n. 1, Art.Nr. 5233 – doi: 10.1038/s41598-019-41695-z.

VAN ECK, E.N., WALTMAN, L. (2009). How to normalize cooccurrence data? An analysis of some well‐known similarity measures. In: «Journal of the American Society for Information Science and Technology», vol. LX, n. 8, pp. 1635-1651.

VAN ECK, N.J., WALTMAN, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. In: «Scientometrics», vol. LXXXIV, n. 2, pp. 523-538.

VAN ECK, N.J., WALTMAN, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. In: «Scientometrics», vol. CXI, n. 2, pp. 1053-1070.

VIOLA, M. (2017). Carving mind at brain’s joints. The debate on cognitive ontology. In: «Phenomenology and Mind», vol. XII, pp. 162-172.

WANG, M., CHAI, L. (2018). Three new bibliometric indicators/approaches derived from keyword analysis. In: «Scientometrics», vol. CXVI, n. 2, pp. 721-750.

WEISKOPF, D. (2021). Data mining the brain to decode the mind. In: F. CALZAVARINI, M. VIOLA (eds.), Neural Mechanisms, Springer, Cham, pp. 85-110.

WEISKOPF, D.A. (2011) Models and mechanisms in psychological explanation. In: «Synthese», vol. CLXXXIII, n. 3, pp. 313-338.

YARKONI, T., WESTFALL, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. In: «Perspective on Psychological Science», vol. XII, n. 6, pp. 1100-1122.


Copyright (c) 2022 Eugenio Petrovich, Marco Viola

URLdella licenza:

Rivista internazionale di Filosofia e Psicologia - ISSN: 2039-4667 (print) - E-ISSN: 2239-2629 (online)

Registrazione al Tribunale di Milano n. 634 del 26-11-2010 - Direttore Responsabile: Aurelia Delfino

Web provider Aruba spa - Loc. Palazzetto, 4 - 52011 Bibbiena (AR) - P.IVA 01573850516 - C.F. e R.I./AR 04552920482

Licenza Creative Commons
Dove non diversamente specificato, i contenuti di Rivista Internazionale di Filosofia e Psicologia sono distribuiti con Licenza Creative Commons Attribuzione 4.0 Internazionale.