Object individuation by iconic content: How is numerosity represented in iconic representation?

Athanasios Raftopoulos

Abstract


Abstract: Fodor argues that perceptual representations are a subset of iconic representations, which are distinguished from symbolic/discursive representations. Iconic representations are nonconceptual (NCC) and they do not support the abilities afforded by concepts. Iconic representations, for example, cannot support object individuation. If someone thinks that perception or some of its parts has imagistic NCC, they face the following dilemma. Either they will have to accept that this NCC does not allow for object individuation, but it represents instead conglomerations of properties and at some stage of visual processing it must interface with cognition and its conceptual capacities for the visual objects to be individuated. Or, they will have to hold that the imagistic, NCC of (or, a stage of) perception, allows for object individuation. I opt for the second thesis because I think there is strong empirical evidence that objects are individuated during early vision. I also think that early vision individuates objects by means of, what I had previously called nonconceptual perceptual demonstrative reference. I argue, first, why Fodor’s view that iconic NCC does not enable object individuation is false. I also argue, contra Fodor, that early vision allows the perception of the cardinality of sets of objects.

Keywords: Early Vision; Analog Representations; Object Individuation; Arithmetic Cognition; Cardinality of Sets

 

L'individuazione di oggetti mediante il contenuto iconico: come è rappresentata la numerosità nella rappresentazione iconica?

Riassunto: Per Fodor le rappresentazioni percettive sono un sottoinsieme delle rappresentazioni iconiche, distinte dalle rappresentazioni simbolico/discorsive. Le rappresentazioni iconiche sono nonconcettuali e non supportano le abilità richieste dai concetti. Le rappresentazioni iconiche, per esempio, non supportano l'individuazione di oggetti. Se si pensa che la percezione o qualche sua parte abbia un contenuto nonconcettuale (NCC) come immagine, si ci si imbatte nel seguente dilemma. O si accetta che il NCC non permetta di individuare oggetti, ma che rappresenti conglomerati di proprietà e che (durante il processamento visivo) si interfacci con la cognizione e le sue capacità concettuali, per individuare gli oggetti visivi. O si dice che l'immagine, il NCC (o una su stadio), della percezione consenta di individuare oggetti. Propendo per la seconda tesi, poiché penso che ci sia solida evidenza empirica per cui gli oggetti vengono individuati durante le prime fasi della visione, in cui l’individuazione avviene mediante quanto definito come riferimento dimostrativo del contenuto nonconcettuale percettivo. Chiarirò le ragioni per cui la concezione di Fodor, per cui il contenuto nonconcettuale iconico non supporta l’individuazione di oggetti, è falsa. Inoltre, contra Fodor, sosterrò che le prime fasi della visione permettono la percezione della cardinalità di insiemi di oggetti.

Parole chiave: Prime fasi della visione; Rappresentazioni analogiche; Individuazione di oggetti; Cognizione aritmetica; Cardinalità degli insiemi


Parole chiave


Early Vision; Analog Representations; Object Individuation; Arithmetic Cognition; Cardinality of Sets

Full Text

PDF

Riferimenti bibliografici


Ayers, M. (2019). Knowing and seeing: Groundwork for a new empiricism, Oxford University Press, Oxford.

Beck, J. (2012). The generality constraint and the structure of thought. In: «Mind», vol. CXXI , n. 483, pp. 563-601.

Beck, J. (2018). Analog mental representation. In: «WIREs Cognitive Science», vol. IX, n. 6, Art.Nr. e1479 - doi: 10.1002/wcs.1479.

Beck, J. (2019). Perception is analog: The argument from Weber’s law. In: «The Journal of Philosophy», vol. CXVI, n. 6, pp. 319-349.

Bialystok, E. (1992). Symbolic representations of letters and numbers. In: «Cognitive Development», vol. VII, n. 3, pp. 301-316.

Blachowicz, J. (1997). Analog representation beyond mental imagery. In: «The Journal of Philosophy», vol. XCIV, n. 2, pp. 55-84.

Block, N. (2014). Seeing-as in the light of vision science. In: «Philosophy and Phenomenological Research», vol. LXXXIX, n. 3, pp. 560-572.

Burge, T. (2010). Origins of objectivity, Clarendon, Oxford.

Burnston, D.C. (2017). Cognitive penetration and the cognition-perception interface. In: «Synthese», vol. CXCIV, n. 9, pp. 3645-3668.

Campbell, J. (2002). Reference and consciousness, Bradford Books, Oxford.

Carey, S. (1995). Continuity and discontinuity in cognitive development. In: E.E. Smith, D.N. Osherson (eds.), An invitation to cognitive science, vol. III: Thinking, MIT Press, Cambridge (MA), 2nd edition, pp. 101-129.

Carey, S. (2009). The origin of concepts, Oxford University Press, Oxford.

Cavanagh, P. (2011). Visual cognition. In: «Vision Research», vol. LI, n. 13, pp. 1538-1551.

Chaumon, M., Drouet, V., Tallon-Baudry, C. (2008). Unconscious associative memory affects visual processing before 100 ms. In: «Journal of Vision», vol. VIII, n. 3, pp. 1-10.

Crane, T. (1992). The nonconceptual content of experience. In: T. Crane, The contents of experience: Essays on perception, Cambridge University Press, Cambridge, pp. 136-157.

Crane, T. (2003). The mechanical mind, Routledge, London, 2nd edition.

Crane, T. (2009). Is perception a propositional attitude?. In: «The Philosophical Quarterly», vol. LIX, n. 236, pp. 452-469.

Crouzet, S.M., Kirchner, H., Thorpe, S.J. (2010). Fast saccades toward faces: Face detection in just 100 ms. In: «Journal of Vision», vol. X, n. 4, pp. 1-17.

Cummins, R., Roth, M. (2012). Meaning and content in cognitive science. In: R. Schantz (ed.), Prospects for meaning, De Gruyter, Berlin/Göttingen, pp. 365-382.

Davies, M. (1989/1995). Tacit knowledge and subdoxastic states. In: C. MacDonald, G. Macdonald (eds.), Philosophy of psychology: Debates on psychological explanation, Blackwell, Oxford, pp. 309-330.

Dehaene, S., Cohen, L. (1995). Towards an anatomical and functional of number processing. In: «Mathematical Cognition», vol. I, n. 1, pp. 83-120.

Dehaene, S., Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between verbal and quantitative knowledge of arithmetic. In: «Cortex», vol. XXXIII, n. 2, pp. 219-250.

Dennett, D.C. (1983). Styles of mental representation. In: «Proceedings of the Aristotelian Society», vol. LXXXIII, n. 1, pp. 213-226.

Dretske, F. (1981). Knowledge and the flow of information, MIT Press, Cambridge (MA).

Echeverri, S. (2016). Indexing the world? Visual tracking, modularity, and the perception-cognition interface. In: «The British Journal of Philosophy of Science», vol. LXVII, n. 1, pp. 215-245.

Echeverri, S. (2017). Visual reference and iconic content. In: «Philosophy of Science», vol. LXXXII, n. 4, pp. 761-781.

Evans, G. (1982). The varieties of reference, Clarendon Books, Oxford.

Feigenson, L., Dehaene, S., Spelke, E. (2004). Core systems of number. In: «Trends in Cognitive Sciences», vol. VIII, n. 7, pp. 307-315.

Fodor, J.A. (1983). The modularity of mind, MIT Press, Cambridge (MA) 1983.

Fodor, J.A. (1998). Concepts. Where cognitive science went wrong: Clarendon Press/Oxford University Press.

Fodor, J.A. (2007). The revenge of the given. In: B.P. McLaughlin, J. Cohen (eds.), Contemporary debates in the philosophy of mind, Blackwell, Malden (MA), pp. 105-116.

Fodor, J.A., Pylyshyn, Z.W. (2014). Minds without meanings: An essay on the content of concepts, MIT Press, Cambridge (MA).

Gallistel, C.R. (1990). The organization of learning, MIT Press, Cambridge (MA).

Gallistel, C.R., Gelman, R. (1992). Preverbal and verbal counting and computation. In: «Cognition», vol. XLIV, n. 1, pp. 43-74.

Gallistel, C.R., Gelman, R. (2000). Nonverbal numerical cognition: From reals to integers. In: «Trends in Cognitive Sciences», vol. IV, n. 2, pp. 59-65.

Goodman, N. (1976). Languages of art, Hackett, Indianapolis.

Grill-Spector, K., Henson, R., Martin, A. (2006). Repetition and the brain: neural models of stimulus-specific effects, in: «Trends in Cognitive Sciences», vol. X, n. 1, 2006, pp. 14-23.

Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S., Itzchak, Y., Malach, R. (1998). A sequence of object-processing stages revealed by fMRI in the Human occipital lobe. In: «Human Brain Mapping», vol. VI, n. 4, pp. 316-328.

Haugeland, J. (1987). An overview of the frame problem. In: Z. Pylyshyn (ed.,) The robot’s Dilemma: The frame problem and artificial intelligence, Ablex Publishing Company, Norwood (NJ), pp. 77-94.

Haugeland, J. (1998). Having thought, Harvard University Press, Cambridge (MA).

Heck, R.G. (2007). Are there different kinds of content?. In: B.P. Mclaughlin, J. Cohen (eds.), Contemporary debates in the philosophy of mind, Blackwell, Malden, pp. 117-138.

Jackendoff, R. (1987). Consciousness and the computational mind, MIT Press, Cambridge (MA).

Johnston, M. (2006). Better than mere knowledge: The function of sensory awareness. In: T.S. Gendler, J. Hawthorne (eds.), Perceptual experience, Clarendon Press, Oxford, pp. 260-290.

Kaplan, D. (1989). Afterthoughts. In: J. Almog, J. Perry, H. Wettstein (eds), Themes from Kaplan, Oxford University Press, Oxford, pp. 565-614.

Keysers, C., Xiao, D.K., Földiak, P., Perrett, D. (2014). The speed of sight. In: «Journal of Cognitive Neuroscience», vol. XIII, n. 1, pp. 90-101.

Kirchner, H., Thorpe, S.J. (2006). Ultra-rapid object detection with saccadic movements: visual processing speed revisited. In: «Vision Research», vol. XLVI, n. 11, pp. 1762-1776.

Kosslyn, S.M. (1994). Image and brain, MIT Press, Cambridge (MA).

Kulvicki, J. (2015). Analog representation and the parts principle. In: «Review of Philosophy and Psychology», vol. VI, n. 1, pp. 165-180.

Lamme, V.A.F. (2003). Why visual attention and awareness are different. In: «Trends in Cognitive Sciences», vol. VII, n. 1, pp. 12-18.

Lamme, V.A.F., Roelfsema, P.R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. In: «Trends in Neuroscience», vol. XXIII, n. 11, pp. 571-579.

Liu, H., Agam, Y., Madsen, J., Krelman, G. (2009). Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex. In: «Neuron», vol. LXII, n. 2, pp. 281-290.

Maley, C. (2011). Analog and digital, continuous and discrete. In: «Philosophical Studies», vol. CLV, n. 1, pp. 117-131.

Meck, W.H., Church, R.M. (1983). A mode control model of counting and timing processes. In: «Journal of Experimental Psychology: Animal Behavior Processes», vol. IX, n. 3, pp. 320-334.

Millkan, R.G. (2004). The varieties of meaning, Bradford Book, Oxford.

Nieder, A., Freedman, D.J., Miller, E.K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. In: «Science», vol. CCXCVII, n. 5587, pp. 1708-1712.

Palmer, S. (1978). Fundamental aspects of cognitive representation. In: E. Rosch, B. Lloyd (eds.), Cognition and categorization, Erlbaum, Hillsdale (NJ) Erlbaum, pp. 259-303.

Peacocke, C. (1986). Analogue content. In: «Proceedings of the Aristotelian Society», vol. LX, n. 1, pp. 1-18.

Peacocke, C. (2001). Does perception have a nonconceptual content?. In: «The Journal of Philosophy», vol. XCVIII, n. 5, pp. 239-269.

Peacocke, C. (2019). The primacy of metaphysics, Oxford University Press, Oxford.

Peterson, M.A., Enns, J. (2005). The edge complex: implicit memory for figure assignment in shape perception. In: «Perception & Psychophysics», vol. LXVII, n. 4, pp. 727-740.

Peterson, S.A., Simon, T.J. (2000). Computational evidence for the subitizing phenomenon as an emergent property of the human cognitive architecture. In: «Cognitive Science», vol. XXIV, n. 1, pp. 93-123.

Potter, M.C., Wyble, B., Hagmann, C.E., McCourt, E.S. (2014). Detecting meaning in RSVP at 13ms per picture. In: «Attention, Perception, Psychophysics», vol. LXXVI, n. 2, pp. 270-279.

Pylyshyn, Z.W. (2001). Visual indexes, preconceptual objects, and situated vision. In: «Cognition», vol. LXXX, n. 1-2, pp. 127-158.

Quilty-Dunn, J. (2016). Iconicity and the format of perception. In: «Journal of Consciousness Studies», vol. XXIII, n. 3-4, pp. 255-263.

Quine, W.V.O. (1960). Word and object, MIT Press, Cambridge (MA).

Quine, W.V.O. (1995). From stimulus to science, Harvard University Press, Cambridge (MA).

Raftopoulos, A. (2009). Cognition and perception: How do psychology and neural science inform philosophy?, MIT Press, Cambridge (MA).

Raftopoulos, A. (2019). Cognitive penetrability and the role of perception, Palgrave Macmillan, London.

Rock, I. (1983). The logic of perception, MIT Press, Cambridge (MA).

Sainsbury, R.M. (2005). Reference without referents, Oxford University Press, Oxford.

Sainsbury, R.M. (2018). Attitudes on display. In: A. Grankowski, M. Montague (eds.), Non-propositional intentionality, Oxford University Press, Oxford, pp. 234-258.

Searle, J.R. (1995). Consciousness, explanatory inversion and cognitive science. In: C. MacDonald, G. Macdonald (eds.), Philosophy of psychology: Debates on psychological explanation, Blackwell, Oxford, pp. 331-355.

Spelke, E.S. (1988). Object perception. In: A.I. Goldman (ed.), Readings in philosophy and cognitive science, MIT Press, Cambridge ( MA), pp. 447-461.

Spelke, E.S., Kestenbaum, R., Simons, D.J., Wein, D. (1995). Spatio-temporal continuity, smoothness of motion and object identity in infancy. In: «British Journal of Developmental Psychology», vol. XIII, n. 1, pp. 113-142.

Strawson, P. (1959). Individuals, Methuen, London.

Treisman, A. (1993). The perception of features and objects. In: A. Baddeley, L. Weiskrantz (eds.), Attention: Selection, awareness and control, Oxford University Press, Oxford, pp. 5-35.

Treisman, A. (1996). The binding problem. In: «Current Opinions in Neurobiology», vol. VI, n. 2, pp. 171-178.

Trick, L., Pylyshyn, Z.W. (1993). What enumeration studies can show us about spatial attention: Evidence for limiting capacity preattentive processing. In: «Journal of Experimental Psychology: Human Perception and Performance», vol. XIX, n. 2, pp. 331-351.

Trick, L., Pylyshyn, Z.W. (1994). Why are small and large numbers enumerated differently? A limited capacity preattentive stage in vision. In: «Psychological Review», vol. CI, n. 1, pp. 80-102.

Uller, C., Carey, S., Fenner, H., Klatt, L. (1999). What representations underlie infant numerical knowledge?. In: «Cognitive Development», vol. XIV, n. 1, pp. 1-36.

Ullman, S., Vidal-Naquet, M., Sali, E. (2002). Visual features of intermediate complexity and their use in classification. In: «Nature Neurosciences», vol. V, n. 7, pp. 682-687.

Whalen, J., Gallistel, C.R., Gelman, R. (1999). Nonverbal counting in humans: The psychophysics of number representation. In: «Psychological Science», vol. X, n. 2, pp. 130-137.

Wynn, K. (1995). Origins of numerical knowledge. In: «Mathematical Cognition», vol. I, n. 1, pp. 36-60.

Wynn, K. (1996). Infants’ individuation and enumeration of actions. In: «Psychological Science», vol. VII, n. 3, pp. 164-169.

Xu, F. (2003). Numerosity discrimination in infants: Evidence for two systems of representations. In: «Cognition», vol. LXXXIX, n. 1, pp. B15-B25.




DOI: https://doi.org/10.4453/rifp.2020.0003

Copyright (c) 2020 Athanasios Raftopoulos

URLdella licenza: http://creativecommons.org/licenses/by/4.0/

Rivista internazionale di Filosofia e Psicologia - ISSN: 2039-4667 (print) - E-ISSN: 2239-2629 (online)

Registrazione al Tribunale di Milano n. 634 del 26-11-2010 - Direttore Responsabile: Aurelia Delfino

Web provider Aruba spa - Loc. Palazzetto, 4 - 52011 Bibbiena (AR) - P.IVA 01573850516 - C.F. e R.I./AR 04552920482

Licenza Creative Commons
Dove non diversamente specificato, i contenuti di Rivista Internazionale di Filosofia e Psicologia sono distribuiti con Licenza Creative Commons Attribuzione 4.0 Internazionale.