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█ Abstract This article discusses the unity of cognitive science that seemed to emerge in the 1950s, based 
on the computational view of cognition. This unity would entail that there is a single set of mechanisms 
(i.e. algorithms) for all cognitive behavior, in particular at the level of productive human cognition as 
exemplified in language and reasoning. In turn, this would imply that theories in psychology, and cognitive 
science in general, would consist of algorithms based on symbol manipulation as found in digital compu-
ting. However, a number of developments in recent decades cast doubt on this unity of cognitive science. 
Also, there are fundamental problems with the claim that cognitive theories are just algorithms. This artic-
le discusses some of these problems and suggests that, instead of unified theories of cognition, specific me-
chanisms for cognitive behavior in specific cognitive domains could be needed, with architectures that are 
tailor-made for specific forms of implementation. A sketch of such an architecture for language is 
presented, based on modifiable connection paths in small-world like network structures. 
KEYWORDS: Connection Paths; Control of Activation; Small-world Networks; Symbol Manipulation; Uni-
ty of Cognition 
 
 
█ Riassunto Dalle teorie unificate della cognizione a quelle specifiche – Questo articolo discute l’unità della 
scienza cognitiva che sembrava emergere negli Anni ’50 e che era basata su una concezione computaziona-
le della cognizione. Questa unità prevedeva l’esistenza di un singolo insieme di meccanismi (algoritmi) per 
tutti i comportamenti cognitivi, in particolare al livello della cognizione umana produttiva come, per 
esempio, linguaggio e ragionamento. A sua volta ciò implicava che le teorie psicologiche e, più in generale 
della scienza cognitiva, prevedessero algoritmi basati sulla manipolazione di simboli come nella computa-
zione digitale. E, tuttavia, diversi sviluppi degli ultimi decenni hanno messo in dubbio questa unità della 
scienza cognitiva. Affermare che le teorie cognitive sarebbero solo algoritmi presenta problemi di fondo. 
Questo articolo discute alcuni di questi problemi, suggerendo che, invece di teorie della cognizione unifica-
ta, si potrebbe aver bisogno di meccanismi specifici per il comportamento cognitivo in specifici domini co-
gnitivi, con architetture ritagliate per specifiche forme di implementazione. Questo articolo presenta uno 
schizzo di una simile architettura per il linguaggio, basata su vie di connessione modificabili in piccoli 
mondi come le strutture di reti. 
PAROLE CHIAVE: Vie di connessione; Controllo dell’attivazione; Reti di piccoli mondi; Manipolazione di 
simboli; Unità della cognizione 
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█  1 Introduction 
 
THE AIM OF THIS SPECIAL issue is to address the 
future of cognitive science(s). The formulation of 
this aim seems to imply the question of whether 
we could speak of future of cognitive science, or 
should speak of the future of cognitive sciences. I 
will address this issue in particular by focusing on 
the question of whether a theoretical foundation 
could be formulated that would account for the 
unity of cognitive science (both human-level cog-
nition and artificial cognition).  

Such a foundation seemed to have emerged in the 
1950s, in a period that has been regarded as the be-
ginning of cognitive science.1 The reason for this is 
that, at that time, at least three developments came 
together: the shift from behaviorism to cognitive 
psychology, the start of artificial intelligence (AI) 
and the emergence of modern linguistics.  

Behaviorism itself, as it arose in the first half of 
the 20th century, could perhaps be seen as a uni-
fied account of the basis of behavior (and in the 
work of Hull even of human and artificial cogni-
tion).2 Yet, as formulated by Watson,3 behavior-
ism originally aimed to explain human behavior 
based on learning only, specifically conditioning. 
So, if all human (and animal) behavior resulted 
from learning, this could imply that humans and 
animals are adapted to their environments, as 
these would be the sources of all their learned ex-
periences. This leaves open the possibility that the 
mechanisms of cognition developed in this way are 
tailor-made for the specific link between the organ-
ism and its environment. In other words, there 
could be a close link between the specific cognitive 
architectures involved, the specific way they are 
implemented, and the cognitive domains they op-
erate in. I will return to this possibility later on. 

The emergence of the computational account of 
cognitive psychology and AI changed this view, at 
least for some time (e.g., up to the re-emergence of 
connectionism in the 1980s). A clear example is 
given by Newell’s aim of «unified theories of cogni-
tion», which are all based on «a single set of mech-
anisms for all cognitive behavior».4 In Newell’s 
view, this single set of mechanisms is based on 
symbol manipulation as found in digital computing 
(e.g., in the von Neumann architecture). In turn, 
this would be needed to solve the problem of “con-
trolled distal access” (or “logistics of access”),5 
which in Newell’s view is required for any produc-
tive cognitive system, as I will discuss in section 5.1. 

Another example of the computational view as 
a unified account of cognition is given by the cri-
tique on the re-emergence of connectionism in the 
1980s by Fodor and Pylyshyn.6 In their critique, 
they formulated three main features of human-
level cognition, given by productivity, composition-
ally and systematicity, which in their view were not 
found in connectionist systems. Instead, they 

would require symbol manipulation, implemented 
in digital computational architectures.  

The views of Newell7 and Fodor and Pylyshyn8 
are closely related. In fact, the features productivity, 
compositionally and systematicity each require a 
computational architecture that possesses logistics of 
access as analyzed by Newell. Furthermore, these 
features also play a key role in the current debate on 
whether deep learning, as given in models like GPT-
3, can provide human-level cognition.9 

Therefore, I will rely in particular on Newell10 
and Fodor and Pylyshyn11 as the basis for the view 
that computational architectures provide a unified 
theory of cognition. Here, however, I will only ad-
dress a few issues related to this view. A discussion 
of other aspects related to this view can be found 
in van der Velde.12 

Recent developments seem to cast doubt on 
whether unified theories of cognition as intended 
by Newell13 would be possible, which also raises the 
question of what this would mean for the develop-
ment of theories of human cognition. I will argue 
that the aim for unified theories of cognition may 
be out of reach. Instead, it would perhaps be better 
to look for specific cognitive architectures, imple-
mented in specific ways and acting within specific 
cognitive domains. However, although this implies 
taking the cognitive domains and forms of imple-
mentation into account, it does not imply a simple 
return to behaviorism as we know it. To see why, I 
will start by briefly describing the transition from 
behaviorism to cognitive science. 
 
█  2 From behaviorism to cognitive science 

 
Around 1950, or even earlier, it became clear 

that classical behaviorism failed to explain human 
behavior in terms of conditioning only. The first 
mechanism explored was classical conditioning, 
based on an already existing (inborn) coupling be-
tween a stimulus and a response (reflex). This in-
born response is then associated with a new stimu-
lus, as illustrated with the famous study of Pav-
lov14 on salivation.  

Although classical conditioning undoubtedly 
works, it is problematic as the basis of all human 
behavior. Either because we would have to assume 
that all human behavior derives from just a few 
existing (inborn) responses, which makes the vari-
ability of human behavior difficult to explain. Or, 
we would have to assume a wide range of already 
existing, hence inborn, responses as the basis of 
human behavior, even for language and reasoning. 
This would be a very problematic assumption for 
a theory that boasted on explaining all of human 
behavior on the basis of learning alone, instead of 
inheritance. In the words of Watson: «we draw 
the conclusion that there is no such thing as an in-
heritance of capacity, talent, temperament, mental 
constitution, and characteristics».15 This claim is 
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essentially meaningless if all our behavior derives 
from a large set of inborn responses. 

However, the problem with classical condition-
ing seemed to be solved with the development of 
operant conditioning by Skinner. Instead of start-
ing with an existing unconditioned response (be-
havior), operant conditioning could modify any 
form of behavior using reinforcement (e.g., re-
ward). So if, say, a monkey accidentally pulled a 
lever upon which a reward emerged, the monkey 
would pull that lever more often.  

Operant conditioning undoubtedly works as 
well. Because it can be used for any kind of behav-
ior, it would seem it has solved the problem of 
classical conditioning. That is, on the assumption 
that the original behavior it starts with is just 
“random”, inherited forms of behavior need not 
be assumed. The random behavior could then be 
modified into more purposeful behavior using re-
inforcement. 

However, the notion of “random” behavior as 
the basis for learning is very unclear. In the case of 
a monkey initially pulling a lever, it is clearly not 
the case that the animal moves its arms and legs 
randomly until one of them accidentally pulls the 
lever. Instead, it would look selectively at the lever 
first and then pull it. Hence, the initial behavior 
should be seen more as explorative than as ran-
dom, which again begs the question of where it 
comes from.  

Other examples of explorative behavior were 
found in behaviorist experiments as well.16 For ex-
ample, a rat left on its own in a maze would be able 
to find the shortest path even before it was trained 
(rewarded) to do so. To deal with this problem, be-
haviorists introduced the concept of the “drive”, 
like a “curiosity” drive that would produce the ex-
ploratory behavior of an animal. Drives such as cu-
riosity are then rewarded by the behavior of the an-
imal. This would eliminate the need for an external 
reward to account for learning, but would maintain 
the idea that all behavior results from learning 
based on some reward. 

But again, drives have to be assumed to exist be-
forehand, which diminishes the importance of learn-
ing in explaining behavior. Also, the sheer amount of 
different drives needed resulted in an incoherent 
view about their nature and their relations. In the 
1950s, all of this resulted in the shift from behavior-
ism to cognitive psychology, which emphasized that 
behavior results from the processing of information, 
instead of just learning associations.  

However, it is remarkable to see that a similar 
criticism of the behavioristic approach was already 
formulated much earlier.17 In the 1910s, Köhler stud-
ied how chimpanzees solved so-called “detour” prob-
lems. For example, a banana would be visible but just 
out of reach. However, by making use of material 
available (e.g., wooden boxes to be used for climb-
ing) the chimpanzees were able to solve the problem, 

in that they could get access to the fruit. Although 
these studies were conducted before the develop-
ment of operant conditioning, Köhler already no-
ticed the problem of relying on initial random behav-
ior to get learning started. In his words: 

 
In the description of these experiments it should 
have been apparent that the chief essential is 
lacking for an explanation by chance actions, 
that is to say, the means by which the solution is 
composed out of chance parts is not apparent. 
Certainly it is not a characteristic of the chim-
panzee, when he is brought into an experimental 
situation, that he should make chance move-
ments out of which, among other things, a non-
genuine solution could arise. Very seldom is a 
chimpanzee seen to attempt any action that 
would have to be considered accidental in rela-
tion to the situation […] all distinguishable stag-
es of his behavior […] tend to appear as com-
plete attempts at solutions, of which none ap-
pears as the result of accidentally arranged parts. 
[…] Never, in real and convincing cases, does the 
solution merge from the disorder of blind im-
pulses. The action is smooth and continuous 
and can be resolved into parts only by the ab-
stract thinking of the observer. In reality the 
parts do not appear independently. Thus […] 
our theory cannot permit the supposition that 
[…] the solutions that came as wholes could pos-
sibly have arisen from mere chance.18 
 
This quote and its timing raise the question of 

why it took until the 1950s before the conclusion 
could be reached that human (and animal) behav-
ior cannot be (fully) described by means of learn-
ing based on conditioning. One reason could be 
that behaviorism simply had to run its course, be-
fore its limitations became more apparent and 
convincing.  

Another reason might be found in philosophy, 
in particular the philosophy of science. Positivism 
and later logical positivism were dominant in the 
first half of the 19th century, and it is clear that 
Watson was strongly influenced by it.19 Although 
Popper had already criticized aspects of logical pos-
itivism in the 1930s, it was not until the 1950s that 
it lost its dominant position in the philosophy of 
science, based on the work of, e.g., Hanson20 and 
Kuhn.21 It is an interesting question (but beyond 
the scope of this article) to see if there is indeed a 
relation between the rise of post-positivism and 
cognitive psychology (insights from Gestalt psy-
chology were certainly used in post-positivism).  

Yet another and perhaps decisive reason could 
have been the development of the computer, not 
only as an abstract model of information pro-
cessing, as with the Turing machine, but also as a 
practical tool. This gave the idea of what infor-
mation processing could be and how it could be 
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developed and tested, as exemplified with the start 
of AI. Initially, cognitive psychology and AI de-
veloped along similar lines, based on the idea that 
cognition derives from computational processes in 
the form of symbol manipulation.22 

The emergence of modern linguistics strength-
ened the notion that cognitive processing is based 
on symbol manipulation. In 1957 Skinner published 
a book on verbal behavior, in which he argued that 
we produce and understand a sentence based on 
learned associations between words.23 In the same 
year Chomsky published a book in which he argued 
that a sentence has a syntactic structure, which 
cannot be understood as just an association be-
tween words.24 The notion of syntactic structures 
and the program (grammar) needed to produce and 
analyse them fitted very well with the computa-
tional approach in cognitive psychology and AI that 
developed around the same time. 
 
█  3 Competing approaches on the nature of 

cognition 
 

In the 1950s it seemed that there is just a single 
cognitive science, dealing with cognition as a form 
of symbol manipulation (both for human cognition 
and artificial intelligence). However, since then 
competing approaches on the nature of cognition, 
such as connectionism and dynamical approaches, 
emerged. On its own that would not indicate the 
end of a single science of cognition. In Kuhn’s 
terms, it could indicate instead that this science has 
not found its foundational paradigm yet.  

However, more recent developments in AI do 
seem to cast doubt on the unity of cognitive sci-
ence, as illustrated with Alpha Go and Alpha Go 
Zero.25 The first is an AI program that learned to 
play the game Go and succeeded in beating the 
world champion. Later, a similar program was de-
veloped for Chess, with a similar result. However, 
Alpha Go itself was defeated by Alpha Go Zero 
(100 to 0, both in Go and Chess). A remarkable 
difference between these two programs resides in 
the way they were trained. The Alpha Go program 
was first trained by using knowledge that had been 
acquired (by humans) on how to play Go or Chess. 
Then, the program was developed further by play-
ing against itself, using forms of machine (rein-
forcement) learning. In contrast, the only forms of 
knowledge used to train Alpha Go Zero were the 
rules of the game Go or Chess. Then, the learning 
procedure based on playing against itself was used 
to develop the program further.  

The significant defeat of the Alpha Go program 
by Alpha Go Zero raises an important question 
about the human knowledge on how to play Go or 
Chess, used with the first program. One could as-
sume that, during the ages, humans would have ac-
quired a lot of knowledge on how to play, e.g., Chess, 
such as the best ways to start the game or how to re-

spond to the opponent in certain situations. So, it 
would seem that using that knowledge would be a 
benefit for an AI program. It would, so to say, have a 
kick-start with this knowledge and then could learn 
further. It would certainly be a benefit over a pro-
gram that was not given this kick-start, but had to 
find out everything for itself. Or so it would seem.  

But the results show otherwise. The knowledge 
on Chess (or Go) used as kick-start apparently 
hindered the program it is development. It seems 
as if it was burdened by it and had to unlearn it be-
fore it could learn to play Chess in the proper way. 
But a program not burdened by human knowledge 
on Chess would develop further and would have 
the upper hand. The minimal conclusion from this 
is that, apparently, we do not understand the game 
of Chess; at least not in the way it could be under-
stood. This raises the question of what that 
knowledge would be. Clearly, it is engraved in all 
of the relations etc. learned by the Alpha Go Zero 
program.  But how are we to understand it, even if 
we could analyse all of these relations? 

The example of Alpha Go Zero suggests that 
our knowledge (cognition) is different from the 
cognition that could be acquired with certain forms 
of machine learning. This raises the question of 
whether the reverse could also be true, and if so, 
what that would entail about the unity of cognitive 
science. An example is found in the language be-
havior program GPT-3.26 This program is based on 
a neural network and trained on a huge amount of 
sentences (more than humans see in their lifetime). 
It can respond to questions or situations by produc-
ing answers in fluent English, which suggests that it 
has mastered the language. 

However, Marcus and Davis27 analyzed the be-
havior of GPT-3 with a number of scenarios. In 
each case, GPT-3 was given a brief description of 
a situation, to which it responded. Although this 
research was not yet intended as a systematic in-
vestigation of GPT-3’s abilities on language com-
pletion or reasoning, a few observations do stand 
out from the replies given.  

Firstly, GPT-3 will produce a response to the 
scenario given whether or not that response 
“makes sense” (e.g., is actually or even remotely 
related to the given scenario). Secondly, even 
when the response makes no sense in any mean-
ingful way, it is not entirely random. For example, 
one scenario concerned the use of a cigarette to 
stir a drink (when a spoon is not available). GPT-3 
replied by telling a story about crematoria. This 
story had nothing to do with the issue at hand, 
which suggests that it did not understand what the 
issue was about.  

It is, of course, possible not to understand an is-
sue. But, in general, a cognitive agent would (should) 
be able to reflect on that and acknowledge that it 
does not understand. From the responses given by 
GPT-3 on this and other scenarios it seems that it 
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does not have that form of reflective knowledge. 
That is, it cannot make a distinction between what it 
knows and what it does not. Instead, it will just give 
an answer, apparently based on direct or indirect as-
sociations it has learned in training. For example, in-
direct associative links between cigarettes and crem-
atoria would certainly be present in the learning ma-
terial for GPT-3, such as the use of fire, the produc-
tion of ashes, or the strong association with death.  

The inability to reflect on what you know or not 
and giving an answer in all cases regardless of wheth-
er it makes sense constitutes a real problem for lan-
guage understanding, and reasoning (cognition) in 
general. This could indeed be a difference between 
learning language and learning to play Chess or any 
other game. In the latter case, there are real re-
strictions on what you can do, as given by the rules of 
the game, the space that the game is confined to, or 
other constraints on the moves you can make. So 
even it, say, a Chess program would produce a move 
like Knight to H9, it would be restrained from per-
forming it because it is not possible.   

In language, and cognition in general, such re-
strictions are far less clear. The examples with 
GPT-3 indicate that, apparently, these restrictions 
cannot come from learning sentences only (as not-
ed, GPT-3 is already trained on more sentences 
than a human will encounter in a lifetime). They 
would also have to come from learning about the 
world in a more direct manner. Moreover, humans 
learn in a different way. Children develop their abil-
ity for language in an incremental manner, learning 
brief sentences and simple scenarios first. Incre-
mental learning is very difficult for neural networks 
as used in machine learning, because it intervenes 
with the statistical analysis of the data these net-
works develop in learning.28  

So, there is a possibility that human cognition 
and cognition acquired with certain forms of ma-
chine learning are distinctly different. One could 
argue here that this conclusion is premature, be-
cause further developments with programs like 
GPT-3 might eventually produce programs that 
have learned to understand the world in the way 
that humans do. 

But this argument misses the point. Even if it 
were possible to develop AI systems at the level of 
human cognition, it is apparently also possible to 
develop AI systems that are significantly different. 
Of course, one could still subsume all of this under 
the same heading of “cognitive science”, but a key 
issue for that science would then be to understand 
why, apparently, different forms of cognition are 
possible, and what that would entail for the gen-
eral notion of “cognition”. 

A first attempt to do this is to have a closer 
look at the unity of cognitive science that seemed 
to emerge in the 1950s. As outlined above, the de-
velopment of the computer played an important 
role in this, as is also clear from the view of Fodor 

and Pylyshyn29 in their well-known analysis of 
connectionism. They argued that this constituted 
a return to behaviorism. On that note, Watson’s30 
version of behaviorism was based on a positivist’s 
view of psychology as a science. So, he was not in-
terested in making models. However, the behav-
iorist Hull was very much interested in developing 
models on how behavior could be produced.31 His 
models were hand designed and consisted of long 
chains of stimulus-response associations (reflexes). 
But in their appearance they are not so different 
from, say, feedforward neural networks as used in 
connectionism.  

According to Fodor and Pylyshyn, the architec-
ture underlying cognition must be a computation-
al architecture as found in digital computing, such 
as the Turing machine or the Von Neumann ar-
chitecture. The reason is that these architectures 
provide the means to process symbolic structures 
in a rule-based manner. In turn, this is needed to 
provide the main features of human-level cogni-
tion, given by the related features of productivity, 
compositionality and systematicity.32  

An example is given by our ability to under-
stand arbitrary “who does what to whom” rela-
tions in arbitrary sentences.33 Systematicity, for 
example, implies that if you understand that Sue is 
the agent in Sue eats pizza, you cannot but under-
stand that pizza is the agent in pizza eats Sue, even 
though that is semantically odd. Indeed, we know 
that pizza eats Sue is odd precisely because we 
identify pizza as the agent and Sue as the object 
(theme) of eat.34  

So, it is no surprise that these features concur 
with Chomsky’s35 view on the unlimited productivity 
of language, which in the view of Fodor and Py-
lyshyn would be achievable only with computational 
architectures. Here, I want to focus on one aspect of 
computation as referred to by Fodor and Pylyshyn. It 
concerns the role of implementation in theories of 
cognition, discussed in the next section.36 
 
█  4 The role of implementation in cognition 
 

The topic can be introduced by a quote from 
Fodor and Pylyshyn on whether it would be useful 
to know how the architectures they refer to are ac-
tually implemented in the brain. Their response is: 

 
The answer […] has always been that the imple-
mentation, and all properties associated with the 
particular realization of the algorithm that the 
theorist happens to us in a particular case, is irrel-
evant to the psychological theory; only the algo-
rithm and the representations on which it oper-
ates are intended as a psychological hypothesis.37  
 
An algorithm is indeed independent of the way 

it is implemented. This follows from the theory of 
computable or recursive functions.38 These are 
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functions for which an “effective procedure” can 
be found to compute the function. Recursive func-
tion theory shows that a formal definition of what 
this means cannot be given. But it also shows that 
all procedures developed thus far are equivalent 
with (or lesser than) the Turing machine. Turing39 
developed the Turing machine to give an answer 
on the question of what an effective procure could 
be. In short, it is a program that can be executed 
on the Turing machine. 

Fodor and Pylyshyn do indeed see the Turing 
machine, and related architectures such as the 
Von Neumann architecture, as the basis for cogni-
tive architectures. In this way, one can describe 
what the aim of a unified cognitive science would 
be. In line with Newell,40 it would consist of devel-
oping and studying the “algorithms and the repre-
sentations on which they operate”, as asserted in 
the quote above. Hence, this approach equates 
cognitive theories and models with algorithms, 
and thus equates any cognitive task with a com-
putable function.   

The fundamental problem with this approach 
is that mathematical functions, of which comput-
able functions are a subset, are inherently static. 
This is clear from the general definition of a 
mathematical function, which describes a function 
as a relation between two sets, the domain (input) 
and the range (output). The function is character-
ized by the way it assigns an element from the 
range to an element of the domain. For a subset of 
functions, a description of this relation can be giv-
en. For example, the numerical function f(x) = 2x 
assigns the output 2x to the input x.  

Another subset of mathematical functions is the 
set of computable functions. For these functions, so-
called “effective procedures” or algorithms can be 
given that produce an output given an input.41 The 
function f(x) = 2x belongs to this subset as well, be-
cause there are algorithms on the Turing machine 
and other computers that produce the value of 2x for 
the input x (assuming sufficient memory is availa-
ble). It is clear now why implementation plays no 
role here. For example, the output of f(x) = 2x for x 
=3 is given by 6, because that follows from the func-
tion description. The role of the algorithm is only to 
produce the output 6 for the input 3, otherwise it 
would in fact compute a different function. The im-
plementation of an algorithm could affect, for exam-
ple, the time it takes to compute the output, but not 
the output itself. It makes no sense to say that “today 
the output of f(3) is 5, because there is no time to 
compute further”.  

But what about cognition? Picture a hominid 
living on the planes in Africa, who is confronted 
with an animal. Let’s say that the choice here is be-
tween a lion or a deer. At face value, this looks like 
a functional problem, and indeed the problem has 
a clear functional aspect. But it is also clear that 
the behavior of the hominid, and indeed its sur-

vival, critically depends on the time in which an 
answer is “computed”.  This aspect is not included 
in the definition of a mathematical function. And 
yet, it is crucial for cognition, because the most 
fundamental aspect of cognition is to generate the 
behavior that enhances survival.42   

Hence, time is an important factor in cognition 
but it is (by definition) not included in computa-
tion theory. This shows that Fodor and Pylyshyn43 
are wrong: “psychological hypotheses” cannot be 
only “algorithms and the representations on which 
they operate”. However, as the choice between a 
lion or deer shows, there are “functional” aspects 
to the production of behavior. These functional 
aspects can be integrated with a dynamical (time) 
constrained description in terms of dynamical sys-
tems as functional “flows”.44 

It is important to understand that this problem 
cannot be solved by including time as a factor in 
an algorithm. For example, a computer program 
that generates a weather prediction will include 
time as a factor, because e.g. you want to know 
when the storm arrives and how long it will last. 
However, this program can be executed on two 
computers with the same computational precision 
but one faster than the other. The result will be 
that both computers generate the same weather 
prediction, because they run the same algorithm. 
But the execution times of the program will be dif-
ferent. This shows that the execution time of an 
algorithm is not a part of the algorithm itself. Yet, 
it is a part of many cognitive tasks, as illustrated 
above. So, the processing underlying these tasks is 
not only depended on an algorithm (i.e. an effec-
tive procedure for a computational function). 

The main conclusion here is that the computa-
tional characterization of cognition that emerged 
in the 1950 is at best incomplete. This casts doubt 
on the unity of cognitive science, as it seemed to 
emerge in that period. Cognition is not just com-
putational, or better, functional (in the mathemat-
ical sense of the word). It also depends on the sat-
isfaction of constraints such a speed of processing 
needed for survival and potentially other con-
straints as well. These constraints and their rela-
tions could be different for different cognitive 
domains. In particular, certain forms of imple-
mentation could be selective for certain forms of 
information processing. 

A glimpse of that could be found in the game 
of Jeopardy that IBM’s Watson played against the 
two best human players at that time.45 IBM’s Wat-
son won the competition. But there were a num-
ber of problems that the humans solved better. 
Not because IBM’s Watson did not know the an-
swer. It did, but it was too slow in these cases. The 
(likely) reason of why IBM’s Watson was too slow 
is that it treated each problem in the same (analyt-
ical) manner. For the humans, however, some 
problems were easier to solve, presumably because 
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of the stronger activation of associations in their 
memory in these cases. In turn, this indicates or 
suggests that human memory is selective.  This, 
again, would be an effect of implementation, as 
given by the way the brain learns, stores and re-
trieves information, specified for the environ-
ments or domains in which it operates. 

Viewed in this way, the competing approaches 
on the nature of cognition could be more than just 
an indication that cognitive science has not found 
its foundational paradigm yet. It could also mean 
that they target different domains, based on dif-
ferent architectures that are tailored to the way 
they are implemented. So, those that succeed in 
winning games like Go and Chess in a way that is 
perhaps beyond our understanding would not 
necessarily be the best suited for language. At least 
not concerning the interactions of language with 
the environment, as given by the ability to deal 
with multiple constraints in a limited amount of 
time, as well as the need for incremental learning. 

At this moment, these are just mere sugges-
tions, for which future developments will show to 
what extent they are true. But, at least, they put a 
focus on closer interactions between the domains 
of cognitive processes, the underlying architec-
tures, and the way the architectures are imple-
mented (and are influenced or determined by their 
implementation). In case of human cognition, this 
would require a more profound understanding of 
how cognitive processing relates to the structure 
and dynamics of the brain. Much more indeed 
than anticipated or advocated by Fodor and Py-
lyshyn.46 The next section discusses this relation in 
somewhat more detail.  
 
█  5 Cognition implemented in the brain 

 
In his Principles of psychology, William James 

stated the following assertion about the relation 
between cognition and brain (or psychology and 
neuroscience, if you will): 

 
For the entire nervous system is nothing but a 
system of paths between a sensory terminus a 
quo and a muscular, glandular, or other termi-
nus ad quem.47 
 
This quote relates to the central thesis of mod-

ern neuroscience, as initiated by Cajal, that neu-
rons form connection paths in the brain.48 But, in 
my view, it also reflects a deep insight into what 
cognition is about and how we should aim to un-
derstand it. When push comes to shove, the aim of 
cognition is to provide the organism with better 
changes of survival, which is indeed reflected in 
the ability to act in response to the stimulation re-
ceived from the environment. 

This entails a behavioristic component in cogni-
tive science. However, to be clear, it does not indi-

cate a return to classical behaviorism, just based on 
conditioned reflexes and drives. As noted in section 
2, this was motivated by a positivist’s view on the 
way science (psychology) should operate, which is 
not implied in James’ quote. This quote does not 
imply either that models of how the brain produces 
behavior should be reflexive in their nature. As ana-
lyzed by Amsel and Rashotte,49 this was in fact the 
main problem of Hull’s behavioristic models. In-
stead, cognition «intervenes in the sensorimotor 
loop by means of which the creature interacts with 
its physical and social environments».50 

In the case of human behavior, all aspects one 
would attribute to higher-level cognition play a 
role in this intervention. Fodor and Pylyshyn51 do 
in fact make a strong case for productivity, com-
positionality and systematicity as important fea-
tures of human-level cognition, as exemplified in 
language. Incremental learning should be added 
here as well, also because it is closely related to 
these features. 

Incremental learning entails that a child will 
learn language starting with small sentences, and is 
capable of gradually integrating already learned 
material with newly acquired knowledge. This is 
very difficult for models like GPT-3, which have 
to be retrained extensively when they aim to ac-
quire new information. In machine learning with 
neural networks, re-learning already learned mate-
rial is needed to prevent undoing the learned 
knowledge by newly learned material (sometimes 
referred to as “catastrophic interference”). This 
behavior is not just an accident but derives direct-
ly from the way these networks learn.52 An exam-
ple is found with GPT-3. At some point a mistake 
was detected in the set-up of the training data. 
However, to address this afterwards would have 
required substantial relearning. Due to the costs 
involved it was decided not to do this.53 

However, the architecture that provides these 
features of cognition would have to be implemented 
in terms of the structure and dynamics of neural pro-
cessing in the brain. This requirement, in my view, 
rules out symbolic architectures that are implement-
ed in a neural manner.54 But, as briefly illustrated in 
the next section, it could be achieved by an architec-
ture that would provide the ability to control con-
nection paths between perception and action, that is, 
control of connection paths that “intervene in the 
sensorimotor loop”. Features such as productivity 
and compositionality could be implemented if the 
architecture has a connection structure that resem-
bles a small-world like network.55 In particular, be-
cause the logistics of access needed for these features 
could be implemented in this way.56 
 
█  5.1 Combinatorial productivity in a small-

world like network structure 
 
A key feature of human language is “combinato-
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rial productivity”, which concerns the virtually un-
limited ability to combine words in arbitrary sen-
tence structures. The ability to combine sound pat-
terns is found in animal communication as well,57 
which would make the difference in combinatorial 
productivity between humans and animals merely 
quantitative. But this difference in quantity is in 
fact so huge that it becomes a different quality in its 
own right. The fact that human cognition is singled 
out by its combinatorial productivity is illustrated 
in, for example, movies and cartoons. Young chil-
dren have no difficulty in relating to a character like 
an artificial sponge living in a pineapple at the bot-
tom the sea, even though that is not derived from 
their direct experience. 

Here, incremental learning and combinatorial 
productivity come together. Children will have 
learned what an “agent” is and what it means to 
live in a house. Effortlessly, they can then recom-
bine these roles and relations even with fantasy 
characters and environments. For hominids, com-
binatorial productivity would have been a key 
ability for their survival, and it is a key ability in 
the environments we live in, much more so than, 
say, the ability to play Go or Chess.  

Behaviorism, even in the way of Hull, would fail 
on this. Combinatorial productivity cannot be 
achieved on the basis of associations alone. For one, 
it cannot provide associations for relations between 
agents, or between agents and actions, never seen 
before. These include, for example, potential rela-
tions between agents that are the reverse of rela-
tions between those agents that have been learned. 
So, if a child has learned that a cat could chase a 
bird, it could also understand what happens if a 
bird would chase a cat, even though it has not yet 
seen that, or even if it would never actually occur. 
Again, this is an ability that makers of, say, movies 
or cartoons are relying on. It is also an ability that 
relates to the notions of systematicity and composi-
tionality, as analysed by Fodor and Pylyshyn.58  

As noted in the introduction, combinatorial 
productivity in computational terms requires ar-
chitectures that possess the ability to achieve con-
trolled distal access to information and integrate it 
in processing,59 which I refer to here as logistics of 
access.60 As analyzed by Newell,61 the need for this 
ability derives from the fact that, in physical 
terms, the amount of information that can be 
stored at a local site is limited. So, with more in-
formation required, the architecture needs to have 
distal access to that information.  

An example is given by the internet. The in-
formation we can store on a local computer is lim-
ited, but we can obtain more information by 
means of distal access to other computers, and 
then download that information to influence pro-
cessing on the local computer.   

Another example is found in language. With a 
lexicon of 60.000 words or more,62 word infor-

mation will be stored at different sites in the archi-
tecture (as it is in the brain).63 So, distal access to 
these sites is needed to integrate these words in a 
sentence structure. This includes the ability to in-
tegrate newly learned words directly in sentence 
structures. As noted above, integrating newly 
learned information is hard for models such as 
GPT-3, which is a strong indication that these 
models do not possess logistics of access.64 

Computational architectures such as the Turing 
machine and the Von Neumann architecture do 
possess logistics of access, which is of course the 
reason why these architectures seemed to be the ba-
sis for cognitive science as it emerged in the 1950s. 
And, as outlined by Newell,65 they achieve logistics 
of access by using symbols, e.g., to retrieve infor-
mation and copy it so that in can affect local pro-
cessing (as in the internet example given above). As 
a result, cognitive processing would have to consist 
of forms of symbol manipulation in this view. 

But, as argued above, there are serious issues 
with these architectures from a cognitive perspec-
tive. There are also serious issues with them from 
a neural perspective. For example, Kreite and col-
league66 proposed that neural codes standing for 
words are stored in dedicated registers to repre-
sent a sentence. So, there would be registers for 
verbs and for nouns as agents or themes of a verb. 
This would allow the representation of a sentence 
like Bob ate steak. Indeed, this is how cognitive ar-
chitectures based on symbol manipulation repre-
sent sentences.67 But the idea that words are repre-
sented in the brain as neural codes that could be 
(and would have to be) transported to dedicated 
registers (e.g., using a data bus as in the Von 
Neumann architecture) to represent a sentence 
does not match with what is known about the way 
conceptual information is stored in the brain. 

Hebb already suggested that conceptual infor-
mation would be represented in the brain as inter-
connected structures he referred to as neural as-
semblies.68 These could and would be distributed 
over the brain and would develop gradually, as 
more information about a concept is learned over 
time. More recent investigations of the structure 
of semantic memory corroborate this view.69 

A representation of a concept as a Hebbian as-
sembly precludes its use as a neural code that 
could be stored in registers. Instead, it will always 
remain “in situ”70 even when it is used as a word in 
a sentence structure. A sentence structure is then a 
connection path between these in situ word (con-
cept) representations. 

However, the logistics of access needed for 
combinatorial productivity imposes major de-
mands on the ability to form connection paths in 
the architecture. For example, connection paths 
must be possible between all in situ assemblies of 
nouns and all in situ assemblies of verbs, in which 
any noun could be any of the arguments of any 
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verb (agent, theme or recipient, depending on the 
verb). This includes combinations never seen be-
fore, such as bird chases cat. 

As an additional problem, it is unlikely that 
new connections between neurons or populations 
are or can be created on the fly. Of course, modifi-
cations of existing connections (in particular in 
the hippocampus and surrounding areas)71 can oc-
cur in short time windows, as in the time window 
for sentence processing. But growing new connec-
tions that would interconnect novel combinations 
of in situ concept assemblies during verbal com-
munication seems unfeasible. 

Given that new connections are not created on 
the fly in verbal communication, the logistics of 
access needed for combinatorial productivity has 
to be achieved with a “fixed” connection structure. 
This demand holds for any model of neural lan-
guage represen.tation or processing. For example, 
Kriete and colleagues’ model72 has to account for 
the fact that the neural code of the word steak, or 
indeed of any other noun, can be stored in each of 
the registers for nouns. Given that new connec-
tions are not created in that process, the model has 
to assume a fixed connection structure in the brain 
by which this can be achieved. An example would 
be a connection structure similar to the Von 
Neumann architecture of the digital computer. In 
this architecture, the content from any arbitrary 
register can be transported (copied) to any other 

register by using the central data bus, controlled 
by the CPU. 

However, the computing architecture in which 
sentence structures are connection paths inter-
connecting in situ word representations would be 
very different from the Von Neumann architec-
ture with its data bus controlled by the CPU. In-
stead, the suggestion is that it could be achieved 
with a particular connection structure related to 
the notion of a “small world network”.73 

Here, only a brief outline of the motivation of 
this idea can be given, as illustrated in Figure 1.74 

Panel (a) of Figure 1 illustrates a connection 
structure in which every noun is connected to eve-
ry verb as its agent. A similar connection structure 
would then have to exist for the theme and recipi-
ent arguments of verbs (as with the verb give). 
Two problems arise here. Firstly, the extensive 
amount of connections needed, given the number 
of nouns and verbs adults are familiar with (in the 
order of 10.000 each).75 Secondly, it is very hard to 
see how new nouns and verbs could easily be add-
ed to the structure. Yet, we learn new nouns and 
verbs throughout our lives. 

In panel (b), a (very!) basic solution is present-
ed by the introduction of “agent nodes” (neurons, 
neural populations) that exist in between the 
nouns and verbs stored in the brain. These agent 
nodes reduce the overall connection structure 
needed to connect nouns as agents of verbs. In-

 
Figure 1. Illustration of connection structures between nouns and verbs. (a) Connections between all noun and verb re-
presentations. (b) Connections between nouns and verbs via agent nodes. (c) Combination of agent and theme nodes to con-
nect nouns and verbs. (d) Connection paths for the sentences Cat likes bird (red solid) and Bird chases cat (blue dashed) in 

the connection structure of (c). 
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stead of every noun being connected to every verb, 
each noun is connected to a more limited set of 
agent nodes only, which in turn are connected to 
each verb. 

The core of the solution illustrated in Figure 1 
is that the agent nodes operate as the “hubs” one 
finds in small-world networks. On the one hand, 
the hubs significantly reduce the number of con-
nections needed, as illustrated by the difference 
between the panels (a) and (b) in this figure. And 
yet, on the other hand, the overall connectivity, in 
which every noun can be an agent of every verb as 
found in (a), is retained. In (c), the agent nodes are 
combined with theme nodes that operate on the 
same principle. 

Panel (d) illustrates how connection paths could 
be established in this connection structure that rep-
resent sentences, such as Cat likes bird (red-solid) 
and Bird chases cat (blue-dash). The arrows indicate 
the order of activation in the connection paths that 
corresponds with hearing or speaking these two sen-
tences. The figure also shows schematically that a 
word can occur concurrently in two different sen-
tences, and in two different roles. 

Of course, the simple schematic connection 
structure in Figure 1 raises a number of deep is-
sues. Van der Velde and de Kamps presented in 
2006 a first attempt to solve them.76 It shows that 
a reduction in connections can be achieved in this 
way, and that the introduction of new nouns (or 
verbs) is easier to account for. In terms of Figure 1, 
a new noun (verb) needs to be connected only to 
the limited set of agent nodes, instead of to all 
verbs (nouns). More recent developments of the 
underlying architecture show that arbitrary sen-
tences in English can be represented and processed 
as connection paths in this way.77 

The key aspect of the solution as outlined in 
Figure 1 is that it provides the logistics of access 
needed for combinatorial productivity in a man-
ner that is different from the Von Neumann archi-
tecture. In both cases, controlled distal access is 
needed to information outside a local site. This 
follows from the physical constraint of the amount 
of information that can be stored at a local site, 
and thus applies to any architecture that aims to 
achieve combinatorial productivity. 

However, the Von Neumann architecture uses 
symbols to retrieve information from a distal site 
to affect local processing (e.g., as illustrated in the 
internet example given above). In contrast, in the 
solution outlined in Figure 1 information is not 
stored with symbols. Instead, it is embedded in the 
network structures at any site in the architecture, 
as suggested by Hebb78 and illustrated by Huth 
and colleagues.79 

Distal access is then achieved by temporarily 
interconnecting distal and local information in a 
connection path in the architecture, so that infor-
mation at both sites can be integrated. In this pro-

cess, the information itself remains in situ at all 
times. The network structure that allows the crea-
tion of these connection paths it provided by the 
small world network structure as outlined in Fig-
ure 1. Processing in this architecture does not con-
sist of forms of symbol manipulation (as there are 
no symbols in the architecture) but by means of 
controlling the creation and use of the connection 
paths in the architecture. In turn, these differences 
in processing could have an affect on behaviour, in 
particular under time constraints. 

However, the fact that full combinatorial produc-
tivity, as in language, can be achieved in this way 
shows that this solution is viable alternative for both 
the von Neumann architecture, which achieves 
productivity with symbol manipulation, and forms 
of deep learning as in GPT-3, which as yet lack in full 
combinatorial productivity.80 

Furthermore, simulations of the architecture 
show that sentence processing proceeds different-
ly in architectures like this compared to symbolic 
processing. These differences emphasize the im-
portance of implementation, even in the case of 
productive architectures that can represent and 
process arbitrary “who does what to whom” rela-
tions in arbitrary sentences, which is a core feature 
of human language.81 
 
█  6 Conclusions 

 
As Newell argued, the unity of cognitive science 

would be based on a “single set of mechanisms for all 
cognitive behavior”,82 consisting of computational 
processing as found in digital computing. Fodor and 
Pylyshyn83 corroborated this view by equating theo-
ries in psychology (cognition) with algorithms based 
on symbol manipulation. 

However, a number of arguments suggest that 
such a “single set of mechanisms” might not exist. 
First of all, the equation of theories in psychology or 
cognitive science with algorithms is simply wrong. It 
ignores effects of implementation, such as speed of 
processing. These are irrelevant for algorithms, but 
important and sometimes vital for cognition. Sec-
ondly, different approaches for specific cognitive 
domains have emerged in recent years, next to the 
architectures based on symbol manipulation. Some 
of these have obtained stunning successes, as in play-
ing games like Go and Chess in ways that seem to 
exceed human understanding. 

The combination of different approaches with 
the importance of implementation for cognition 
suggests a shift from unified to specific theories 
of cognition. Each of these would deal with a spe-
cific cognitive domain, with architectures that 
are tailor-made for specific forms of implementa-
tion. Of course, they could all still be subsumed 
under the label “cognitive science”, but this 
would not fulfill the aim that Newell had with 
unified theories of cognition. 
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As noted, the importance of implementation 
and the constraints imposed by a cognitive do-
main (for example, the need for survival) entail a 
return of a behavioristic component in cognitive 
science. The role of reinforcement learning in ma-
chine learning, and indeed the emphasis on learn-
ing as the basis of cognition in this field under-
scores this return. However, it would be a mistake 
to discard fundamental features of cognition rec-
ognized after, and even before, the decline of be-
haviorism in the 1950s. Among these are the 
productivity, systematicity and compositionality 
of human level cognition, as well as the im-
portance of incremental learning. 

In the case of human cognition, insight in the 
role of implementation will be provided by the in-
teraction between neuroscience and psychology.  
New kinds of architectures have to be developed 
to satisfy the constraints of both the structure and 
dynamics of the brain and the fundamental fea-
tures of cognition and behavior. I illustrated this 
with a sketch of an architecture in which sentence 
structures consist of (temporal) connection paths 
interconnecting in situ word or concept represen-
tations, as found in human semantic memory. 

Further developments of such architectures are 
needed. But their successes would show that it is pos-
sible to implement fundamental cognitive features 
like productivity, systematicity and compositionality 
without relying on forms of symbols manipulation. 
Hence, instead of relying on a “single set of mecha-
nisms”, they would be achieved with different mech-
anisms, based on activation control of connection 
paths in small-world network structures as provided 
by the structure of the brain. 
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