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█ Abstract The significance of neuroscientific findings for the analysis of central problems in cognitive sci-
ence has long been a matter of debate. Recent developments in cognitive neuroscience have reignited this 
discussion, especially with regard to the study of cognitive representations and cognitive processes. The 
present paper focuses on multivariate analyses, a class of neuroscientific methods that promises to shed 
new light on the neural bases of cognitive representations. Multivariate approaches are both powerful and 
increasingly used. Yet, we argue that their successful application in neuroscience requires significant theo-
retical and methodological clarification. After providing a preliminary assessment of the pros and cons of 
multivariate methods, we claim that their successful application crucially depends on how we conceptual-
ize the relationships between representations, cognitive processes, and neural data, in other words, on the 
cognitive ontology we use to describe the human mind. Our discussion also highlights some general 
strengths and weaknesses of neuroscientific contributions to the program of classical cognitive science. 
KEYWORDS: Cognitive Process; fMRI; Multivariate Analysis; Marr’s Three Levels of Analysis; Cognitive 
Ontology 
 
█ Riassunto Rappresentazioni e processi: quale ruolo per i metodi multivariati nelle neuroscienze cognitive? - 
La rilevanza dei risultati neuroscientifici per quanto riguarda i problemi centrali delle scienze cognitive è 
motivo di discussione. Recenti sviluppi nelle neuroscienze cognitive hanno rianimato tale dibattito, in par-
ticolare rispetto allo studio delle rappresentazioni e dei processi cognitivi. Il presente articolo si focalizza 
sull’analisi multivariata, un insieme di metodi neuroscientifici che si promettono di studiare le basi neurali 
delle rappresentazioni cognitive. Nonostante le potenzialità e l’uso pervasivo degli approcci multivariati, in 
questo lavoro sosteniamo che prima di poter valutare il loro effettivo contributo nello studio delle rappre-
sentazioni cognitive sia necessaria una chiarificazione teorica e metodologica. Dopo una discussione pre-
liminare dei vantaggi e degli svantaggi dei metodi multivariati, evidenziamo come una loro efficace appli-
cazione dipenda in maniera sostanziale da come viene intesa la relazione tra rappresentazioni, processi co-
gnitivi e dati neurali o, in altre parole, dall’ontologia cognitiva che impieghiamo per descrivere la mente 
umana. Il presente lavoro affronta inoltre i generali punti di forza e gli elementi critici rispetto al contribu-
to della ricerca neuroscientifica nel programma delle scienze cognitive classiche. 
PAROLE CHIAVE: Cognitive Process; fMRI; Multivariate Analysis; Marr’s Three Levels of Analysis; Cogni-
tive Ontology 
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IN THE SECOND HALF OF the last century, cogni-
tive science emerged as a research program aimed 
at unifying the study of the mind across various 
disciplines, integrating computational methods 
from computer science and neuroscience, as well 
as more traditional methods from psychology, phi-
losophy, linguistics, and anthropology. In recent 
years, critics have raised concerns about various 
aspects of cognitive science. Some scholars have 
questioned the success of the enterprise and raised 
doubts about its viability and coherence as an in-
terdisciplinary research program.1 Others have in-
stead criticized the role that some of the disci-
plines constituting cognitive science play within 
the broader research program. Yet others doubt 
whether neuroscience has made or can make a 
valuable contribution or, more specifically, if it 
can advance cognitive science, especially in regard 
to classical problems related to how the mind rep-
resents and processes information.2 

In this connection, one major challenge con-
cerns the concept of representation, that is, how 
the human mind processes and represents the ex-
ternal world. Neuroscience offers important op-
portunities for studying the neural substrates of 
representations. Explaining how “neural represen-
tations”3 are related to, and influenced by, cogni-
tive representations and processes would repre-
sent a key step in bridging the gap between neuro-
science and theories in cognitive psychology, lead-
ing to a mature cognitive neuroscientific investi-
gation of the human mind. However, the impact 
of neuroscientific findings on the study of repre-
sentation is still an open question. 

The present paper contributes to this ongoing 
debate by focusing on multivariate analyses, a spe-
cific class of recently developed neuroscientific 
methods used to analyze neural data. Multivariate 
methods differ from traditional methods in neuro-
science and are considered a promising approach 
for shedding light on the concept of representa-
tion.4 However, multivariate analyses raise meth-
odological issues concerning the interpretation of 
their results. In particular, such issues concern the 
specific experimental features detectable by means 
of multivariate approaches. To better assess the 
relevance of multivariate methods for understand-
ing how stimuli features are cognitively and neu-
rally encoded by humans, a deeper analysis of the 
concept of representation is needed. 

Our aim is to provide a preliminary assessment 
of multivariate methods as a tool for studying rep-
resentations within cognitive (neuro)science, by 
highlighting the pros and cons of these techniques 
and emphasizing some of the methodological 
problems raised by their application. In a nutshell, 
we argue that multivariate methods are indeed a 
valuable tool for improving our understanding of 
cognitive representations and hence advancing the 
cognitive science program; however, their success 

crucially depends on how we conceptualize the re-
lationships between cognitive states, cognitive 
processes, and neural data – a issue which is not 
still fully thematized and needs further work to be 
properly assessed. In this paper, we point to the 
main problems at the interface between neurosci-
entific research and classical reflections in cogni-
tive science and offer a tentative assessment and 
discussion of their possible solutions. 

The structure of the paper is as follows. We 
start with a quick recap of the notions of cognitive 
representation and process as discussed in cogni-
tive science and neuroscience (Section 1). Then, in 
Section 2, we consider how multivariate analyses 
of neuroimaging data can shed light on the prob-
lem of representation. In Section 3, we use two 
toy-examples to illustrate several methodological 
issues that arise from the use of these approaches. 
As we shall see, the main problem is assessing 
whether neuroimaging results can be considered 
to provide evidence for representations, or instead 
address the cognitive processes that operate on 
them. As argued in Section 4, this issue is strictly 
related to the debate on the absence of a clear-cut 
“cognitive ontology” for describing human mental 
states.5 We suggest that David Marr’s “three levels 
of analysis”6 model provides a useful conceptual 
framework to consider this central problem. In 
Section 5, we conclude with some remarks on the 
role of neuroscience within the cognitive science 
enterprise more generally. 
 
█  1 Representations and processes in cognitive 

(neuro)science 
 
Since the early days of cognitive science, the in-

tertwined notions of cognitive representation and 
cognitive processing process have played key roles 
in the investigation of the mind. The main reason 
for this can be traced back to Computability The-
ory,7 which gave cognitive science its central con-
ceptual framework: the Turing Machine model, in 
which the (human) mind is conceptualised as a 
computational system in which cognitive process-
es are computations that operate on the internal 
symbols of the system.8 

The pivotal role of internal symbols in per-
forming cognitive tasks, as emphasized by Jerry A. 
Fodor in his famous slogan “no computation 
without representation”,9 has largely been dis-
cussed in the context of computational representa-
tional theories of mind. In these theories, the sym-
bols upon which computations operate are repre-
sentations, that is, internal (mental) entities with 
syntactic and semantic characteristics. Thus, rep-
resentations are (mental) states characterized by a 
particular content that refers to the external 
world, making them semantically evaluable. Cog-
nitive processes can then be understood as opera-
tions on representations. 
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The relationship between mental representation 
and computation, i.e., cognitive process, as dis-
cussed by Fodor finds clarification and systematiza-
tion in Marr’s model.10 Marr proposes we concep-
tualize the information-processing performed by a 
system at three levels: as computation, algorithm, 
and implementation. This conceptualization addi-
tionally inspires helpful insights into the connec-
tions between these levels. The highest or computa-
tional level relates to the task performed by the sys-
tem. The intermediate or algorithmic level con-
cerns how computational theory is effectively car-
ried out. Finally, the implementational level consid-
ers the physical substrates on which such infor-
mation processing is realized. 

Modern neuroscience addresses many of the 
traditional topics in cognitive science, employing 
technologies like electroencephalography (EEG), 
Positron Emission Tomography (PET), and Magnet-
ic Resonance Imaging (MRI). MRI, the focus of this 
paper, allows neuroscientists to study the neural 
correlates of cognitive functions by tracing the 
electromagnetic behavior of oxygen in the blood 
flowing through brain regions. Indeed, when the 
MRI technique is used in an experimental setting, 
local consumption of oxygen is considered to pro-
vide a clue to the neural activity that results from 
the experimental manipulation. Here, we will talk 
about functional MRI or fMRI, which aims at de-
tecting activity-related changes in the blood oxy-
genation of neural cells, that is, the “blood oxy-
genation level dependent” signal (BOLD). 

The most common approach to assessing how 
the activity of brain regions is affected by experi-
mental variables in fMRI-based studies is to detect 
variation in the BOLD signal at the level of single 
voxels11 or voxel clusters. The peaks of the BOLD 
signal measured under different experimental 
conditions are first compared voxel by voxel and 
then aggregated into clusters that define brain re-
gions. Analyses of neuroimaging data based on 
this approach are called “univariate” or “voxel-
based” analyses. The univariate analysis contrasts 
BOLD signals (proxies for neural activity) across 
different experimental conditions, revealing 
whether a voxel or cluster of voxels was more or 
less active during one manipulation as compared 
to another. From this evidence, the neuroscientist 
can infer that the observed brain location was re-
cruited for processing the experimental stimuli 
and, in turn, associate that locus with engagement 
of the supposedly recruited cognitive function. 

However, as noted by Davis and Poldrack,12 
univariate approaches are poor tools for address-
ing the problem of representation. Since univari-
ate analyses are based on the contrast of averaged 
brain activity associated with different experi-
mental conditions (e.g., two different classes of 
stimuli), they are only useful for studying repre-
sentations at the level of the general characteris-

tics whereby the compared experimental condi-
tions vary. Suppose, for instance, that during an 
fMRI experiment, subjects are presented with two 
sets of stimuli: (i) pictures of places and (ii) pic-
tures of human faces. Experimenters may find out 
that a certain brain region or voxel responds dif-
ferently to (i) as compared to (ii). However, from 
this univariate analysis, they can only infer that 
the target brain region is sensitive to the differ-
ence between places and human faces, that is, to 
the general dimension by which experimental 
stimuli can be disentangled. 

The univariate approach does not allow us to 
infer how these neural activations associated with 
one set of stimuli (e.g., set (i)) differ from each 
other in terms of more specific stimulus features 
(e.g., whether the instances from set (i) are artifi-
cial or natural places); any decision as to which 
characteristics might be responsible for differ-
ences in activation is a matter of interpretation 
based on the researchers’ hypothesis. Consequent-
ly, univariate approaches help us infer to what ex-
tent the general cognitive processing of one class 
of stimuli differs from another in neural terms, but 
cannot offer a deeper understanding of how 
stimulus features might be neurally represented. 
Indeed, for a richer analysis of brain activations 
associated with specific characteristics of stimuli, 
that is, their representations, we would need a 
method that can measure the multiple features or 
dimensions of experimental stimuli that might be 
processed by the brain. The limits of univariate 
analysis can be considered one of the main reasons 
why fMRI evidence has played such a minor role 
in the study of representations. In the next section 
we will consider the methods that have been in-
troduced to address this issue.  
 
█ 2 Neural representations and multivariate 

methods 
 
The neuroscientific study of representations has 

advanced in recent years, as new and more power-
ful methods have been proposed for analyzing neu-
ral activity. The most prominent of these is multi-
variate pattern analysis (MVPA).13 MVPA differs 
from the univariate approach because it is based on 
the analysis of patterns of activations instead of 
single units and can potentially reveal a richer class 
of task-related effects.14 Multivariate methods allow 
us to investigate how specific populations of neu-
rons vary while processing stimuli and can help us 
understand how different voxels within the same 
region may process different information or fea-
tures related to the experimental manipulation. 
Therefore, MVPA provides a multidimensional 
analysis of experimental conditions; it reveals the 
relationships between groups of voxels rather than 
mere voxel-by-voxel comparison. In other words, 
while the univariate approach assumes the single 
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voxel (or voxel cluster) as a whole encodes the ma-
nipulated psychological variable (e.g., processing 
places vs human faces), by analyzing different pat-
terns of activation elicited across voxels, MVPA al-
lows us to investigate how more specific stimulus 
features are neurally processed. Then, these pat-
terns of activation detected by means of MVPA can 
easily be arranged within a “representational space” 
in which the responses of each of the considered 
voxels can be associated with specific features of 
the experimental stimuli. 

Let us briefly describe the main steps involved 
in methods based on multivariate analysis. First, 
the acquired fMRI-based data are arranged in a N-
dimensional representational space, showing 
changes in the neural activity for each of the N 
voxels considered over the time course of the 
study. Second, the data are split into two sets, the 
training and testing sets. The training set is labeled 
according to the experimental stimuli that gener-
ated the neural activity and used to train a ma-
chine learning algorithm (e.g., a support vector 
machine classifier). At this stage, the aim of the 
algorithm is to learn the best partition for the neu-
ral data, based on known experimental conditions. 
Third, once the algorithm has been trained on la-
beled data, it is tested using new, unseen data, that 
is, the testing set. The aim of this validation phase 
is to assess whether the partition previously estab-
lished using the labeled data is also able to dis-
criminate unseen data, that is, whether it accurate-
ly associates unseen neural activity with the exper-
imental manipulation that generated it. Finally, if 
the algorithm succeeds in discriminating different 
populations of voxels, these patterns of voxels are 
considered to be responsive to the stimuli used 
during the experiment. Consider experimental 
stimuli sets (i) and (ii) above, respectively related 
to pictures of places and human faces. While uni-
variate analysis would only allow us to disentangle 
faces and places in general, the representational 
space of neural activations based on MVPA would 
allow us to cluster stimuli within the same set (e.g., 
pictures of places) according to similarities (i.e., 
correlations) between their neural activations. At 
the cognitive level, such similarity is considered to 
provide a clue to neural processing of a certain 
feature (e.g., being a natural place). Thus, cluster 
of stimuli can be distinguished from other mem-
bers of the same experimental set (e.g., those clas-
sified as pictures of artificial places). Therefore, 
MVPA offers a finer analysis of stimulus charac-
teristics and allows us to analyze neural patterns in 
terms of similarity-based models, providing for 
more interesting connections between neural re-
sults and cognitive science theories. 

According to advocates, multivariate analyses 
are more efficient than univariate analyses for in-
vestigating the problem of representation. This 
has lead to «representational studies»15 in cogni-

tive neuroscience, that is, studies that employ mul-
tivariate approaches to investigate how stimuli fea-
tures are represented and neurally encoded in sub-
jects’ brains. However, it is worth noting that mul-
tivariate methods also suffer from general limita-
tions; in many cases, they merely offer a more fine-
grained answer to the problem of localization. Fur-
thermore, the conclusions drawn by researchers us-
ing available fMRI data depend on the experi-
mental designs used to collect such data (e.g., an 
ecological experimental paradigm as compared to a 
more classic design in which stimuli are presented 
repeatedly) as well as the methods16 researchers se-
lected to analyze them. Davis and Poldrack never-
theless highlight the advantages of representational 
studies that use specific multivariate methods, such 
as representational similarity analysis (RSA), when 
compared to the univariate approach. 

RSA17 represents one of the main methods for 
investigating the association between features of 
experimental stimuli and patterns of activation. 
The notion of similarity is central in this tech-
nique. Indeed, it allows researchers to assess to 
what extent stimuli sharing common characteris-
tics can also be considered similar according to the 
neural activations they elicit. 

Suppose that a researcher interested in affective 
neuroscience plans to investigate how humans cat-
egorize emotionally salient stimuli, such as pictures, 
in a fMRI setting. Assume that every picture pre-
sented during the experiment is characterized, 
among others, by a specific emotion-related feature 
like arousal (high or low). The experimental condi-
tion will then consist in manipulating the inde-
pendent variable “arousal” by presenting different 
pictures18 that should induce emotional responses 
with varying levels of arousal. In addition, the stim-
uli can be ordered according to high or low arousal; 
the researcher will expect that pictures which elicit 
a similar arousal level (e.g., high) will evoke more 
similar brain responses than pictures characterized 
by a different level of arousal (e.g., low). 

RSA would allow us to analyze this type of 
isomorphism19 between similar stimuli features 
and similar brain responses by (1) comparing 
stimuli pairwise within two distinct representa-
tional dissimilarity matrices (RDM), i.e., two ma-
trices representing the degree of similarity of 
stimuli respectively assessed at the level of their 
neural activations and, for instance, behavioral re-
sponses, such as reaction-time, skin conductance, 
and self-report responses measured on specific 
scales;20 and (2) assessing the overall, second-order 
similarity occurring between the two RDMs. 
Thus, RSA is one of the most powerful tools for 
running representational analyses because it as-
sesses how stimuli feature and representational 
content with a dimensional structure (i.e., that 
vary according to one or more dimensions such as 
arousal) are neurally encoded. Moreover, it allows 
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us to detect similarities between multidimensional 
spaces built on different types of data, e.g., neural, 
behavioral, or derived from computational mod-
els, on the same set of experimental stimuli.21 

 
█ 3 Similar representations or common pro-

cesses? 
 
Neuroscientific representational methods al-

low us to directly address the problem of represen-
tation and other challenges in cognitive neurosci-
ence, as pointed out by Davis and Poldrack: 

 
Given that one of the primary goals of cogni-
tive neuroscience is to delineate how cognition 
is supported by the brain, it is highly desirable 
that neuroscience methods like neuroimaging 
be able to answer questions about both pro-
cesses and representations.22 

 
Assuming a clear distinction between the cog-

nitive and neural levels of analysis of human cog-
nition when trying to explain how neural represen-
tations are related to and influenced by cognitive 
representations and processes would represent a 
key step towards bridging the gap between theo-
ries in cognitive psychology and neuroscience.23 So 
far, many works have already explored this line of 
research24 and, within neuroimaging techniques, 
representational approaches seem to constitute 
the best way for studying how cognitive represen-
tations are neurally encoded. However, at this 
point, it is crucial to understand whether a poten-
tial gap between the cognitive and neural descrip-
tions of the notions of process and representation 
may impact the discussion and the development of 
a mature cognitive neuroscience. A major concern 
is: What are representational methods applied to 
fMRI data actually picking up? 

As Davis and Poldrack25 note, this methodo-
logical issue is central when experimenters discuss 
whether fMRI data provides evidence for how the 
brain neurally represents stimuli characteristics or 
instead for how it implements a covarying cogni-
tive process operating upon the same stimuli char-
acteristics. In order to clarify this interpretational 
concern raised by Davis and Poldrack, we provide 
two toy-examples, describing two hypothetical 
fMRI-based investigations.  

First, consider a fMRI-based MVPA study 
meant to investigate the cognitive process “face 
perception”. Participants are presented with a bat-
tery of pictures representing several visual stimuli 
and asked to passively observe them during fMRI 
scanning. A subset of these stimuli are humans fac-
es. In order to investigate face perception, the ex-
perimenters will analyze the brain activation pat-
terns associated with viewing this subset of stimuli 
as compared to the rest. For the sake of simplicity, 
we will focus on two facial stimuli X and Y. Assume 

that, on average across participants, processing of X 
and Y show highly similar activation patterns, that 
is, activity of the same population of voxels. The 
experimenters can interpret these results for X and 
Y in two different ways, as summarized by the fol-
lowing interpretations: 

 
(A1): The observed activation patterns are 
similar because both relate to processing the 
features of X and Y that are relevant for face 
perception (that is, a unique process operates 
on the common features of X and Y, such as 
their shape, the presence of a mouth, two eyes 
and the distances and positions of these eyes, 
that make face perception possible; 
 
(B1): The observed activation patterns are sim-
ilar because both relate to the representational 
similarity of X and Y (that is, the stimuli are 
representationally similar because both are fa-
cial stimuli and, therefore, share similar charac-
teristics, such as the presence of a mouth, two 
eyes, their distances, and positions). 
 
Even though apparently identical, the two in-

terpretations of the neural activations are respec-
tively associated with two distinct questions con-
cerning what putatively happens at the cognitive 
level when stimuli are processed by subjects. Such 
questions can be formulated as follows: 

 
(QA1): Which stimuli features are relevant for 
performing the process of face perception? 
(Connected to A1); 
 
(QB1): Which features in the representations of 
the two stimuli are similar? (Connected to B1).  
 
The point here is that the answer to QA1 clear-

ly overlaps with the answer to QB1. Indeed, we can 
expect that the same set of features in X and Y are 
relevant both for performing face perception and 
for assessing whether the two stimuli are represen-
tationally similar. In other words, performing face 
perception requires that X and Y be similar with 
respect to the fact that both are facial stimuli (e.g., 
have a certain shape, a mouth, two eyes, etc.). 

In these scenarios the two questions are insepa-
rable in practice and the two interpretations A1 
and B1 about the neuroimaging evidence can be 
considered equivalent when analyzed at the func-
tional level. Therefore, assuming that the neu-
roimaging evidence is shedding light on the first 
question (concerning the engagement of a certain 
cognitive process) rather than the second one 
(about the representations of stimuli), or vice ver-
sa, is simply impossible and, to some extent, even 
irrelevant for the interpretation of the results. In 
conclusion, it is not feasible (and probably mean-
ingless) to ask whether similar neuroimaging evi-
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dence for X and Y reflects the fact that partici-
pants are performing face perception or the fact 
that participants are processing the representa-
tional similarities of X and Y as facial stimuli.  

Consider now a second toy-experiment in 
which neuroscientists are no longer interested in 
face perception, but rather in analyzing “emotion 
processing” and, in particular, the emotional re-
sponses elicited by stimuli. Suppose again that, for 
two stimuli X and Y representing human faces, 
similar populations of voxels are activated on av-
erage across participants. When asked to interpret 
this finding for X and Y, the experimenters may 
provide the following two interpretations: 

 
(A2): The observed activation patterns are 
similar because X and Y trigger the same emo-
tional response; (that is, a unique process oper-
ates on common affective features of X and Y 
that cause the same emotional response); 
 
(B2): The observed activation patterns are sim-
ilar because of the representational similarity 
of X and Y (that is, stimuli are representation-
ally similar because both are facial stimuli and, 
therefore, share similar characteristics). 
 
This second scenario may seem identical to the 

first one, but it is not. Again, the two interpreta-
tions can be associated with the following ques-
tions concerning the cognitive level: 

 
(QA2): What stimuli features are relevant 
when stimuli are processed emotionally? (Con-
nected to A2); 
 
(QB2): Which features in the representations of 
the two stimuli are similar?” (Connected to B2). 
 
However, in this scenario, given that we are in-

terested in emotion processing rather than face 
perception, we would like to disentangle QA2 and 
QB2. Indeed, the features of X and Y that make 
them similarly salient from an emotional view-
point might not be identical to the features that 
make X and Y similar in other respects, e.g., as fa-
cial stimuli. In other words, when the functional 
level is analyzed, the interpretations A2 and B2 are 
not somehow equivalent as they are in the case of 
A1 and B1, in which the overlap between face 
recognition as cognitive process and the similarity 
of X and Y as facial stimuli was not problematic. 
In this case, indeed, the feature(s) which permit X 
and Y to be grouped together in terms of emo-
tional responses differ from the feature(s) accord-
ing to which they might be judged to be represen-
tationally similar. Otherwise, it would mean that 
the general features characterizing a stimulus as a 
facial stimulus (e.g., the shape, the presence of two 
eyes, and the mouth) would be sufficient to cause 

the emotional response, leading to the same emo-
tional response for an entire subset of facial stimu-
li, even when more specific aspects, such as the fa-
cial expression, changed dramatically. In this case, 
answering the two questions is not trivial and, in 
turn, the two interpretations A2 and B2 are not 
functionally comparable, even though the neu-
roimaging evidence on its own would make it im-
possible to disentangle them.  

In both toy-examples, interpretations A rest on 
the investigation of the process that is commonly 
considered to be the input, while interpretations B 
rely on the representational similarity of the stim-
uli. For the As, a similar pattern of activation 
would be evidence for concluding that the same 
cognitive process (e.g., emotional response) was 
engaged, while, for the Bs, similar neural activa-
tions would be a clue to the processing of features 
that make the representations of those stimuli 
similar. However, the issue just described high-
lights how neuroscientists cannot completely dis-
regard the possibility that neuroimaging results 
are not evidence of how the brain represents stim-
uli themselves, but may instead indicate what 
common cognitive process is recruited by the 
brain for operating on these representations.  

The main difference between the two examples 
rests on the type of process that is considered: face 
perception or emotional response. Following a 
classic distinction proposed by Fodor,26 Davis and 
Poldrack27 argue that cognitive processes can be 
generally classified as domain-specific and vertical 
(e.g., vision) or domain-general and horizontal 
(e.g., categorization and decision-making). Ac-
cording to this distinction, the authors suggest 
that relating a similar activation pattern to repre-
sentations rather than to a common process oper-
ating upon them is functionally equivalent only for 
domain-specific processes. Indeed, such processes 
appear to be confined to the elaboration of a par-
ticular feature that is common among stimuli of a 
specific type. On the contrary, domain-general 
processes appear able to operate over a wider 
range of types of experimental stimuli (e.g., emo-
tional responses can be measured for pictures of 
facial stimuli as well as stimuli representing com-
pletely different contents such as movies) and sys-
tematically covary with some representational re-
lationships between them. 

Following these definitions, face perception 
might be classified as a domain-specific process, 
leading to the functional equivalence of A1 and B1; 
while emotional response might represent an in-
stance of horizontal processing, leading to non-
functionally comparable interpretations, such as A2 
and B2. Therefore, the distinction between vertical 
and horizontal processing would allow neuroscien-
tists to disentangle similarly problematic scenarios.  

Specifying a priori the type of process putative-
ly involved in an experimental investigation could 
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help address the interpretational limits of represen-
tational studies, but it is not enough to completely 
resolve the underlying conceptual issue. First, the 
distinction between vertical and horizontal pro-
cessing is difficult in practice and may remain theo-
retically ungrounded if not embedded in a more gen-
eral framework for human cognition. Second, it 
could be difficult for researchers to design experi-
mental settings that completely control for the en-
gagement of different types of processes or to estab-
lish – a priori – how these processes relate to each 
other and may impact the elaboration of stimuli. 

Other strategies for accounting for these issues 
are available. A general strategy is using experi-
mental designs in which all the potential features 
according to which stimuli vary and that can elicit 
the engagement of different cognitive processes are 
clearly distinguished. One way to implement this 
and, in turn, control for the cognitive processes re-
cruited during the experimental manipulation, is to 
isolate the variable of interest by presenting classes 
of stimuli that have features that are orthogonal to 
the aspects being studied.28 A further possibility is 
to analyze not only neuroimaging data, but also dif-
ferent types of evidence, such as behavioral data 
and results from computational models. This solu-
tion, available for instance in RSA-based studies,29 
can provide convergent information on the same 
set of stimuli, explaining the processes and repre-
sentational features that participants of the experi-
ment are actually handling. 

To sum up, utilizing multivariate approaches 
for analyzing fMRI data is not enough to ensure 
an effective approach to studying cognitive rep-
resentations. Specific strategies have to be taken 
to control experimental confounds, but these do 
not provide a definitive solution to a methodo-
logical issue that seems more conceptual than 
empirical. The relationships between cognitive 
processes and the neural evidence provided by 
neuroimaging techniques as well as the general 
use of the notions of representation and process 
in cognitive science and neuroscience need fur-
ther theoretical clarification. 

 
█ 4 A cognitive ontology informed by Marr’s 

“three levels of analysis” 
 
The interpretational issues (and strategies to 

address them) discussed in the last section point 
towards a debate that has consequences for cogni-
tive science as a whole, that is, the difficulty in 
providing an optimal “cognitive ontology”. A cog-
nitive ontology consists in a clear-cut taxonomy of 
mental states and cognitive processes recruited 
during task manipulation that can be efficiently 
mapped to available experimental evidence, such 
as brain activations. Many studies, at least in the 
neuroscientific field, have addressed these onto-
logical aspects30 and proposed tentative solutions, 

generally based on literature-mining and the crea-
tion of databases that include cognitive functions, 
tasks, behavioral variables, and neural evidence.31 
However, a major limit of these taxonomies is the 
coarse use of naïve and non-standardized labels 
for describing neuroscientific hypotheses in the 
literature. Moreover, these efforts appear to be 
mainly confined to the neuroscientific field, even 
though the problem of vague cognitive vocabulary 
affects several fields in cognitive science. 

In order to better grapple with the interpreta-
tional issues that affect representational studies, we 
propose applying Marr’s “three levels of analysis” as 
a general criterion for cognitive processes and rep-
resentations. Indeed, Marr’s analysis of the rela-
tionships between processes, representations, and 
physical implementations appears to provide a fine-
grained vocabulary for describing our cognitive on-
tology and, in particular, promises to shed light on 
the vertical/horizonal processing distinction.  

Marr32 proposes to conceptualize the elabora-
tions performed by a system as taking place at three 
levels: computation, algorithm, and implementa-
tion. The computational level describes what is 
computed and why, that is, the general logic of the 
computations performed by the system and their 
relevance for the task at hand. In particular, the 
computational level describes the computational 
model in abstract terms, that is, as a mapping be-
tween a given input and a computed output. Con-
sider, for instance, a digital computer performing 
an arithmetical operation on numbers, e.g., a sub-
traction. The analysis of the computational level 
here will simply involve a description of the map-
ping between the input (e.g., a pair of numbers) and 
the output (e.g., a single number) and the set of 
rules and abstract properties that govern the opera-
tion at stake (e.g., the general properties of the op-
eration of subtracting numbers). 

The intermediate level is the algorithmic one, 
which describes how the computational theory is 
to be carried out. At this level, the notions of rep-
resentation and process are pivotal, given that it is 
the algorithmic level that most closely depends on 
the system’s architecture and how the system’s ar-
chitecture will determine how a certain input is 
represented and processed by the system itself. 
Representations consist in the entities storing in-
formation relevant for a certain task, that is, in-
formation about the available input from the ex-
ternal world. Processes refer to the algorithms that 
practically manipulate these representations. For 
instance, in the case of an arithmetical operation, 
representations may consist in numerical quanti-
ties we generally refer to by means of the symbols 
in the Arabic numeral system. Of course, we can 
use different notations for representing the same 
numerical entities, such as Chinese numerals: in 
this case we can talk about different representa-
tions. Therefore, the algorithms, i.e., the manipu-
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lations that transform the input into the output of 
the process, largely depend on the features of these 
representations. 

The algorithms for calculating subtraction 
based on the Arabic numeral system may differ 
from those based on another notation; the algo-
rithms governing a digital computer will differ 
from those governing mathematical operations 
performed by means of an abacus. However, in all 
these cases, the algorithms will refer to the set of 
deterministic and finite operations that the system 
effectively performs on the internal representa-
tions to carry out the computation.  

The last level of analysis discussed by Marr is 
the implementational one, involving the physical 
substrates with which the information processing 
is realized. For instance, a wooden abacus and a 
modern digital computer are two different physi-
cal implementations performing the same algo-
rithmic operations. It is worth noticing that this 
level is independent from the previous one. In-
deed, at least in principle, the same representa-
tional systems and algorithms can be implemented 
using different technologies. However, the charac-
teristics of some algorithms might suit some sub-
strates better than others.33 

First of all, let us use Marr’s model to reinter-
pret the toy-examples discussed in the previous 
section. Two preliminary clarifications are neces-
sary. In Marr’s model, the cognitive processes 
“face perception” and “emotional response” would 
refer to the general computations performed by 
the system, mapping certain stimuli provided as 
input (e.g., X and Y) to certain internal cognitive 
states given as output (e.g., an emotional reac-
tion). Second, the neural activity observed during 
experiments would represent the fMRI-detectable 
trace of the implementational level, that is, what 
the fMRI scanner detects is assumed to be the 
neural realizer of the computation at issue. Con-
sequently, Marr’s model imposes a sort of linguis-
tic shift: “face perception” actually refers to the 
general description of the computation at stake, 
without knowledge of how it is operationalized by 
specific processes operating on features of exper-
imental stimuli, i.e., Marr’s algorithms manipulat-
ing internal (cognitive) representations of the sys-
tem. Moreover, the model suggests that the “neu-
ral representation”, i.e., the fMRI-detectable neu-
ral activity, must now refer to physical realizers. 
Then, from now on, every time we talk about rep-
resentations, we will specifically refer to the cogni-
tive representations of external stimulus features 
on which cognitive processes, i.e., algorithms in 
Marr’s terms, operate. 

The interpretational issues discussed above 
arise at this level of analysis, that is, when we pro-
vide a description of how the computational level 
should be considered to be operationalized in 
terms of processes operating on representations. 

To clarify this aspect, let focus, for instance, on 
the computation “emotional response”, from the 
second toy-example.  

At the algorithmic level, we can suppose that 
what leads to the emotional response of the system 
is a series of processes, i.e., algorithms, operating 
on cognitive representations of the perceptual fea-
tures of stimuli. In particular, such processes will 
extract some features from stimuli and then assess 
their emotional salience. This simple operationali-
zation appears substantially consistent with inter-
pretation A2. On the other hand, in this toy-
example, interpretation B2 is a potential con-
found. B2 suggests that the same activation pat-
tern (i.e., physical implementation) associated 
with the stimuli is actually related to their repre-
sentational similarity. Therefore, we should as-
sume that, in the case of B2, the computation 
“emotional response” is not operationalized by 
means of a series of processes operating on the 
representations of emotionally salient perceptual 
features. Instead, it should mark the representa-
tions of the stimuli themselves or, more correctly 
according to the assumed framework, a series of 
processes able to extract perceptual features that 
overall are common across stimuli and then to 
compare them in order to assess whether these 
stimuli are similar or not. Given that the emotion-
ally salient features of X and Y are not necessarily 
equivalent to features that make them representa-
tionally similar (but covary with them), A2 and B2 
are not functionally equivalent and, therefore, the 
interpretational issues arise. 

The descriptions of computational theory at 
the level of the algorithms and the related repre-
sentations may shed light on these problems. First, 
Marr’s model allows us to disentangle the notions 
of representations and processes, by describing the 
interpretational issues only in terms of neural acti-
vations associated with different processes operat-
ing on representations. Second, Marr’s model clar-
ifies how we should conceptualize the difference 
between vertical and horizontal processing men-
tioned by Davis and Poldrack.34 Indeed, it could be 
the case that one computation (e.g., face percep-
tion or processing of stimulus similarity) has to be 
considered vertical as compared to another (e.g., 
emotional response) when it is operationalized by 
algorithms able to take a lower number of types of 
representations as input, e.g., for face perception, 
only those referring to face-related perceptual fea-
tures. In other words, a vertical computation ap-
pears operationalized by processes highly special-
ized for the elaboration of specific stimuli features, 
while a horizontal computation appears to be 
based on processes that can potentially operate on 
a variety of different representations. Therefore, 
two different cognitive functions can be consid-
ered comparable as vertical computations and also 
functionally equivalent, if the processes that im-
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plement them are specialized for the elaboration 
of the same set of stimuli features. Instead, when a 
vertical computation such as the processing of 
stimuli similarity is compared with a more do-
main-general one, e.g., emotion processing (im-
plemented by algorithms operating on a variety of 
different types of representations) their functional 
equivalence is no longer tenable. However, the 
features that make stimuli representationally simi-
lar systematically covary with those that make 
stimuli emotionally salient, leading to the interpre-
tational issues discussed.  

Of course, this type of analysis is always com-
parative, but the interpretational problem of rep-
resentational studies always concerns two process-
es that need to be compared, e.g., the processing of 
stimuli similarity vs emotional response. 

Thus, according to this classification, in the 
case of the two toy-examples discussed in 2, we 
can conclude that (i) the algorithms implementing 
face perception are as domain-specific as those re-
lated to the processing of stimuli similarity;35 (ii) 
the algorithms implementing emotional response 
are more domain-general than those related to the 
processing of stimuli similarity; and, finally, (iii) 
algorithms implementing emotional response 
would also be more domain-general than those re-
lated to the processing of face perception. 

Therefore, identifying Marr’s algorithmic level 
allows us to disentangle different cognitive pro-
cesses that remain apparently indistinguishable 
when described in more abstract terms, such as at 
the computational level. Indeed, the notions of al-
gorithm and representation allow us to describe 
processes in fine-grained terms, that is, as elabora-
tions operating on specific types of representa-
tions. The description makes clear what manipula-
tions representations of stimuli features will un-
dergo, so we can differentiate processes as algo-
rithms that operate on different kinds of input. In 
this way, it clarifies the distinction between verti-
cal and horizonal processing advanced in Davis 
and Poldrack36 and improves the interpretation of 
results in representational studies.  

A further advantage of Marr’s model is that it 
allows us to specify the relationship between an 
experimental setting and the recruitment of cogni-
tive processes. Indeed, without any information 
about the experimental setting, we cannot defini-
tively rule out the engagement of one versus an-
other cognitive process. However, differing from 
our toy-examples, experimental settings are usual-
ly described in considerable detail, for instance, 
detailing the instructions provided to subjects. 
The type of task performed and the instructions 
provided play a pivotal role in driving subjects’ at-
tention to certain features rather than others and, 
in turn, eliciting specific cognitive processes. For 
instance, in our second toy-example, the simple 
instruction to think about the emotional content 

of the presented stimuli may drastically change the 
cognitive performance of the subjects, by boosting 
their focus on emotionally salient characteristics. 
This means that an adequate cognitive ontology 
cannot avoid including a “task ontology”37 in 
which experimental instructions, manipulations, 
and stimuli characteristics are clearly described 
and related to cognitive functions. However, to 
help us understand how a specific instruction may 
recruit a certain process that operates on specific 
stimuli features, we need a fine-grained descrip-
tion of cognitive states, not just a simple definition 
at the computational level. Marr’s algorithmic lev-
el seems to offer a good framework. Moreover, it 
offers a principled motivation for explaining how 
experimental instructions supposedly relate to cer-
tain processes operating on specific representa-
tions of stimuli features. 

 
█ 5 Concluding remarks 

 
The development of new techniques for ana-

lyzing brain activity has reopened the interesting 
debate on the impact of neuroscience in the field 
of cognitive science. Recently developed multivar-
iate methods widely applied in cognitive neurosci-
ence, such as RSA and machine learning analyses 
of fMRI data, are better tools than traditional uni-
variate methods for shedding light on the notion 
of representation. This is a crucial challenge, since 
being able to explain how neural activations are 
related to and influenced by cognitive representa-
tions and processes would represent a key step in 
relating neuroscientific results to theories from 
cognitive psychology. 

As we have argued, however, multivariate ap-
proaches are affected by issues related to the in-
terpretation of neuroscientific evidence as a relia-
ble clue to either cognitive representations of ex-
perimental stimuli or the covarying cognitive pro-
cesses that operate on them. In order to clarify 
these issues on the methodological level, we de-
tailed how they arise in the context of two toy-
example fMRI-based representational studies. 
Then, we discussed the useful distinction between 
vertical and horizonal processing as well as other 
strategies for addressing this problem. We argued 
that these solutions only partially deal with the 
problem, since it appears to be more conceptual 
than empirical. Moreover, we noted that the verti-
cal/horizonal processing distinction, as stated in 
Davis and Poldrack,38 remains an insufficient in-
strument for mitigating the underlying methodo-
logical problems if not embedded within a more 
general theoretical framework. 

In a nutshell, we claim that the main caveat in 
using multivariate methods to investigate cogni-
tive representations is the lack of a unified theo-
retical framework that clarifies the relationships 
between representations, processes, and neural da-
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ta, and also establishes guidelines using a fine-
grained vocabulary, i.e., a cognitive ontology, that 
scientists can use to refer to cognitive states.  

As a step towards better understanding con-
cepts of representations and processes at the inter-
face between cognitive science and neuroscience, 
we propose a novel application of Marr’s well-
known model to the methodological issues dis-
cussed above. More precisely, we suggest that 
Marr’s model, by forcing researchers to describe 
how the computational level should be operation-
alized in terms of algorithms operating on repre-
sentations, can shed light on the relationships be-
tween cognitive states and neural evidence. 

Moreover, thanks to the notion of algorithm, 
the model disentangles cognitive processes that 
appear indistinguishable when described in only 
abstract terms, making distinctions such as the 
one between vertical and horizontal processing 
more clearly interpretable. Multivariate methods 
represent an important technique for analyzing 
human brain fMRI data and advancing cognitive 
science. However, their success crucially depends 
on how researchers deal with the methodological 
issues they raise regarding the relationships be-
tween cognitive representations, cognitive pro-
cesses, and neural data. In this paper, we propose 
that approaching these problems from the per-
spective of cognitive ontology could improve the-
oretical dialogue comparing neuroscientific con-
cepts and classical reflections in cognitive science. 
Indeed, a more accurate scientific taxonomy for 
human cognition is a first and necessary step to-
wards a mature research program in cognitive 
neuroscience. 

 
█ Acknowledgements and funding 

 
The author would like to thank Fabrizio Cal-

zavarini, Luca Cecchetti, Giacomo Handjaras, and 
Marco Viola for the discussions about the topics 
related to this work. A special thank to Gustavo 
Cevolani for the insightful suggestions in the devel-
opment of the idea behind the current paper and 
the very helpful comments during the preparation 
of the draft. The author acknowledges funding 
from an ERASMUS+ Mobility Grant 2020/2021. 

 
█  Notes 
 

1 Cf. M. BODEN, Mind as machine; R. NÚÑEZ, M. ALLEN, 
R. GAO, C.M. RIGOLI, J. RELAFORD-DOYLE, A. SE-

MENUKS, What happened to cognitive science?. 
2 Cf. W. BECHTEL, A. ABRAHAMSEN, G. GRAHAM, The 
life of cognitive science.  
3 Cf. R.A. POLDRACK, The physics of representation. 
4 Cf. T. DAVIS, R.A. POLDRACK, Measuring neural repre-
sentations with fMRI. 
5 Cf. C.J. PRICE, K.J. FRISTON, Functional ontologies for 
cognition. 
6 Cf. D. MARR, Vision. 
 

 

7 Cf. A. TURING, On computable numbers, with an appli-
cation to the Entscheidungsproblem; A. TURING, Compu-
ting machinery and intelligence. 
8 Cf. H. PUTNAM, Psychophysical predicates; D. CHALMERS, 
On implementing a computation; R.L. CHRISLEY, Why eve-
rything doesn’t realize every computation; J.A. FODOR, The 
language of thought. For a general overview of the different 
ways of construing the model, cf. G. PICCININI, C. MALEY, 
Computation in physical systems. 
9 Cf. J.A. FODOR, The mind-body problem. 
10 Cf. D. MARR, Vision. 
11 A voxel is the minimal 3-dimensional unit for which 
the MRI scanner acquires the BOLD signal and pro-
duces images of the brain. The resolution of these im-
ages reflects the size of one side of the voxel, generally 
between 1 and 4 millimeters. 
12 Cf. T. DAVIS, R.A. POLDRACK, Measuring neural rep-
resentations with fMRI. 
13 Cf. J.D. HAYNES, G. REES, Predicting the stream of con-
sciousness from activity in human visual cortex; K.A. 
NORMAN, S.M. POLYN, G.J. DETRE, J.V., HAXBY, Beyond 
mind-reading; N. KRIEGESKORTE, P.A. BANDETTINI, 
Analyzing for information, not activation, to exploit high-
resolution fMRI; N. KRIEGESKORTE, M. MUR, P.A. BAN-

DETTINI, Representational similarity analysis-connecting 
the branches of systems neuroscience; T. NASELARIS, K.N. 
KAY, S. NISHIMOTO, J.L. GALLANT, Encoding and decod-
ing in fMRI; N. KRIEGESKORTE, R.A. KIEVIT, Represen-
tational geometry; J.B. RITCHIE, D.M. KAPLAN, C. 
KLEIN, Decoding the Brain. 
14 Cf. T. DAVIS, K.F., LAROCQUE, J.A. MUMFORD, K.A. 
NORMAN, A.D. WAGNER, R.A. POLDRACK, What do differ-
ences between multi-voxel and univariate analysis mean?. 
15 Cf. T. DAVIS, R.A. POLDRACK, Measuring neural rep-
resentations with fMRI; N. KRIEGESKORTE, P.K. DOUG-

LAS, Cognitive computational neuroscience. 
16 For instance, as pointed out by a recent study that 
involved seventy neuroscientific research groups 
around the world, the specific pipeline used to analyze a 
single commonly available fMRI data set impacts the 
resulting conclusions and interpretations. R. BOTVINIK-
NEZER, F. HOLZMEISTER, C.F., CAMERER, A. DREBER, ET 

ALII, Variability in the analysis of a single neuroimaging 
dataset by many teams. 
17 In addition to MVPA, classification and machine 
learning methods can be used for multivariate analysis 
of fMRI data. The key aspect of machine learning rep-
resentational approaches rests on training a model, 
such as a support vector machine to make classifica-
tions of neuroimaging data. Often these methods use 
brain activation patterns to determine to which exper-
imental condition an unknown target stimulus belongs. 
A third type of representational analysis is encoding. 
Encoding models (cf. K.N. KAY, T. NASELARIS, T., 
PRENGER, J. L. GALLANT, Identifying natural images 
from human brain activity; G. ST-YVES, T. NASELARIS, 
The feature-weighted receptive field; C. DU, J. LI, L. 
HUANG, H. HE, Brain encoding and decoding in fMRI 
with bidirectional deep generative models) can be 
thought of as working in the opposite direction to the 
classification approach: instead of mapping similarities 
between activation patterns onto stimuli features, en-
coding models map a hypothesized psychological fea-
ture space onto brain patterns (T. DAVIS, R.A. 
POLDRACK, Measuring neural representations with 
fMRI, p. 118). RSA, machine learning, and encoding 
 



Representations and processes 

 

197 

 

can be considered to be different MVPA methods. 
However, for relevant relationships between them cf. 
ibid, p. 116; N. KRIEGESKORTE, P.A. BANDETTINI, Ana-
lyzing for information, not activation, to exploit high-
resolution fMRI; N. KRIEGESKORTE, M. MUR, P.A. BAN-

DETTINI, Representational similarity analysis-connecting 
the branches of systems neuroscience; N. KRIEGESKORTE, 
R.A. KIEVIT, Representational geometry; A.L. ROSKIES, 
Representational similarity analysis in neuroimaging. 
18 Assuming – as an anonymous Reviewer correctly 
pointed out – that there is a way to determine the level 
of arousal evoked by every picture that is univocal and 
independent from the observed neural activation. 
19 On the concept of isomorphism in cognitive science: 
R.N. SHEPARD, Reviewed work; R.N. SHEPARD, S. CHIP-

MAN, Second-order isomorphism of internal representa-
tions. On the concept of isomorphism in RSA, cf. N. 
KRIEGESKORTE, M. MUR, P.A. BANDETTINI, Representa-
tional similarity analysis-connecting the branches of sys-
tems neuroscience; N. KRIEGESKORTE, R.A. KIEVIT, Rep-
resentational geometry. 
20 Suppose that, in addition to the fMRI study, experi-
menters collect self-report responses from a different 
group of subjects presented with the same set of pic-
tures and asked to judge how emotionally salient these 
stimuli are on a scale from “no salience” to “maximum 
salience”. These data will be useful for building one of 
the two RDMs, that is, the matrix comparing stimuli 
according to their affective characteristics. Therefore, 
such “behavioral” RDM will be compared to the other 
RDM, based on neural responses evoked by stimuli 
during the fMRI study. 
21 Cf. N. KRIEGESKORTE, M. MUR, P.A. BANDETTINI, 
Representational similarity analysis-connecting the 
branches of systems neuroscience; N. KRIEGESKORTE, 
R.A. KIEVIT, Representational geometry. 
22 Cf. T. DAVIS, R.A. POLDRACK, Measuring neural rep-
resentations with fMRI, p. 108. 
23 In this work, we have discussed how multivariate 
methods can help shed light on the concept of represen-
tation and how a classic debate in cognitive science 
could be integrated with a more neuroscientific per-
spective. However, these methods do not offer any de-
finitive answers to some deeper issues related to repre-
sentations, for instance, the realism vs. anti-realism de-
bate on mental entities and their nature (e.g., whether 
they are symbolic vs. distributed or multimodal vs. am-
odal). Multivariate methods do not represent a solution 
for these issues within the philosophy of cognitive sci-
ences, but – we argue – as long as (a) a realist position 
on the concepts of representation and process and (b) a 
neuroscience-based perspective to studying the mind 
are assumed, multivariate methods can provide a more 
straightforward contribution to the study of represen-
tations and cognitive processes than other approaches 
to analyzing neuroimaging data. 
24 Cf. N. KRIEGESKORTE, P.A. BANDETTINI, Analyzing for 
information, not activation, to exploit high-resolution 
fMRI; N. KRIEGESKORTE, Pattern-information analysis; 
T. DAVIS, R.A. POLDRACK, Quantifying the internal struc-
ture of categories using a neural typicality measure; G. 
PICCININI, O. SHAGRIR, Foundations of computational 
neuroscience; C. BALKENIUS, P. GÄRDENFORS, Spaces in 
the brain; R.A. POLDRACK, The physics of representation. 
25 Cf. T. DAVIS, R.A. POLDRACK, Measuring neural rep-
resentations with fMRI, p. 125. 
 

 

26 Cf. J.A. FODOR, The modularity of mind. 
27 Cf. T. DAVIS, R.A. POLDRACK, Measuring neural rep-
resentations with fMRI, p. 125. 
28 Cf. ibid.; S. BRACCI, H.O. DE BEECK, Dissociations and 
associations between shape and category representations 
in the two visual pathways. However, as an anonymous 
Reviewer of this work correctly pointed out, it is worth 
noticing that the theoretical benefits of using certain 
experimental paradigms rather than others to disentan-
gle different cognitive processes are often reduced or 
erased by similar difficulties that may arise at the em-
pirical level. 
29 Cf. N. KRIEGESKORTE, M. MUR, P.A. BANDETTINI, 
Representational similarity analysis-connecting the 
branches of systems neuroscience; N. KRIEGESKORTE, 
R.A. KIEVIT, Representational geometry. 
30 Cf. C.J. PRICE, K.J. FRISTON, Functional ontologies for 
cognition; R.A. POLDRACK, Can cognitive processes be 
inferred from neuroimaging data?; R.A. POLDRACK, 
Mapping mental function to brain structure; C. KLEIN, 
Cognitive ontology and region-versus network-oriented 
analyses; J.C. FRANCKEN, M. SLORS, From commonsense 
to science, and back; M. VIOLA, Carving mind at brain’s 
joints; T. EICH, D. PARKER, Y. GAZES, Q. RAZLIGHI, C. 
HABECK, Y. STERN, Towards an ontology of cognitive 
processes and their neural substrates. 
31 Cf. R.A. POLDRACK, A. KITTUR, D. KALAR, E. MILLER, 
C. SEPPA, Y. D. GIL, S. PARKER, F.W. SABB, R.M. BILDER, 
The cognitive atlas; J.L. LANCASTER, A.R. LAIRD, S.B. 
EICKHOFF, M.J. MARTINEZ, P.M. FOX, P.T. FOX, Auto-
mated regional behavioral analysis for human brain im-
ages; J.A. TURNER, A.R. LAIRD, The cognitive paradigm 
ontology. 
32 Cf. D. MARR, Vision. 
33 Cf. ibid., p. 24. 
34 Cf. T. DAVIS, R.A. POLDRACK, Measuring neural rep-
resentations with fMRI. 
35 Then, leading to the functional equivalence of inter-
pretations A1 and B1 in the first toy-example discussed 
in section 4. 
36 Cf. ivi. 
37 Cf. C. FIGDOR, Semantics and metaphysics in infor-
matics; R.A. POLDRACK, A. KITTUR, D. KALAR, E. MIL-

LER, C. SEPPA, Y.D. GIL, S. PARKER, F.W. SABB, R.M. 
BILDER, The cognitive atlas; J.C. FRANCKEN, M. SLORS, 
From commonsense to science, and back. 
38 Cf. T. DAVIS, R.A. POLDRACK, Measuring neural rep-
resentations with fMRI. 
 
█ Literature 
 
BALKENIUS, C., GÄRDENFORS, P. (2016). Spaces in the 

brain: From neurons to meanings. In: «Frontiers in 
Psychology», vol. VI, Art. Nr. 1820 – doi: 
10.3389/fpsyg.2016.01820. 

BECHTEL, W., ABRAHAMSEN, A., GRAHAM, G. (2017). 
The life of cognitive science. In: W. BECHTEL, G. 
GRAHAM (eds.), A companion to cognitive science, 
Blackwell, London/New York, pp. 1-104. 

BODEN, M. (2006). Mind as machine: A history of cogni-
tive science, Oxford University Press, Oxford. 

BOTVINIK-NEZER, R., HOLZMEISTER, F., CAMERER, C.F., 
DREBER, A. ET ALII (2020). Variability in the analysis 
of a single neuroimaging dataset by many teams. In 
«Nature» vol. DLXXXII, n. 7810, pp. 84-88. 

BRACCI, S., DE BEECK, H.O. (2016). Dissociations and 
 



 Coraci 

 

198 

 

associations between shape and category representa-
tions in the two visual pathways. In: «Journal of 
Neuroscience», vol. XXXVI, n. 2, pp. 432-444. 

CHALMERS, D. (1995). On implementing a computation. In: 
«Minds and Machines», vol. IV, n. 4, pp. 391-402. 

CHRISLEY, R.L. (1995). Why everything doesn’t realize 
every computation. In: «Minds and Machines», vol. 
IV, n. 4, pp. 403-430. 

DAVIS, T., LAROCQUE, K.F., MUMFORD, J.A., NORMAN, 
K.A., WAGNER, A.D., POLDRACK, R.A. (2014). What 
do differences between multi-voxel and univariate 
analysis mean? How subject-, voxel-, and trial-level 
variance impact fMRI analysis. In: «Neuroimage», 
vol. XCVII, pp. 271-283. 

DAVIS, T., POLDRACK R.A. (2013). Measuring neural 
representations with fMRI: Practices and pitfalls. In: 
«Annals of the New York Academy of Sciences», 
vol. MCCXCVI, n. 1, pp. 108-134. 

DAVIS, T., POLDRACK, R.A. (2014). Quantifying the in-
ternal structure of categories using a neural typicality 
measure. In: «Cerebral Cortex», vol. XXIV, n. 7, 
pp. 1720-1737. 

DU, C., LI, J., HUANG, L., HE, H. (2019). Brain encoding 
and decoding in fMRI with bidirectional deep generative 
models. In: «Engineering», vol. V, n. 5, pp. 948-953. 

EICH, T., PARKER, D., GAZES, Y., RAZLIGHI, Q., HA-

BECK, C., STERN, Y. (2020). Towards an ontology of 
cognitive processes and their neural substrates: A 
structural equation modeling approach. In: «PLoS 
ONE», vol. XV, n. 2 Art.Nr. e0228167 – doi: 
10.1371/journal.pone.0228167. 

FIGDOR, C. (2011). Semantics and metaphysics in infor-
matics: Toward an ontology of tasks. In: «Topics in 
Cognitive Science», vol. III, n. 2, pp. 222-226. 

FODOR, J.A. (1975). The language of thought, Harvard 
University Press, Harvard. 

FODOR, J.A. (1981). The mind-body problem. In: «Sci-
entific American», vol. CCXLIV, n. 1, pp. 114-125. 

FODOR, J.A. (1983). The modularity of mind: An essay 
on faculty psychology, MIT Press, Cambridge (MA). 

FRANCKEN, J.C., SLORS, M. (2014). From commonsense 
to science, and back: The use of cognitive concepts in 
neuroscience. In: «Consciousness and Cognition», 
vol. XXIX, pp. 248-258. 

HAYNES, J.D., REES, G. (2005). Predicting the stream of 
consciousness from activity in human visual cortex. In: 
«Current Biology», vol. XV, n. 14, pp. 1301-1307. 

KAY, K.N., NASELARIS, T., PRENGER, T., GALLANT, J.L. 
(2008). Identifying natural images from human brain 
activity. In: «Nature», vol. CDLII, n. 7185, pp. 
352-355. 

KLEIN, C. (2012). Cognitive ontology and region-versus 
network-oriented analyses. In: «Philosophy of Sci-
ence», vol. LXXIX, n. 5, pp. 952-960. 

KRIEGESKORTE, N. (2011). Pattern-information analysis: 
From stimulus decoding to computational-model testing. 
In: «Neuroimage», vol. LVI, n. 2, pp. 411-421. 

KRIEGESKORTE, N., BANDETTINI, P.A. (2007). Analyz-
ing for information, not activation, to exploit high-
resolution fMRI. In: «Neuroimage», vol. XXXVIII, 
n. 4, pp. 649-662. 

KRIEGESKORTE, N., DOUGLAS, P.K. (2018). Cognitive 
computational neuroscience. In: «Nature Neuro-
science», vol. XXI, n. 9, pp. 1148-1160. 

KRIEGESKORTE, N., KIEVIT, R.A. (2013). Representatio-
nal geometry: Integrating cognition, computation, and 

 

 

the brain. In: «Trends in Cognitive Sciences», vol. 
XVII, n. 8, pp. 401-412. 

KRIEGESKORTE, N., MUR, M., BANDETTINI, P.A. (2008). 
Representational similarity analysis-connecting the 
branches of systems neuroscience. In: «Frontiers in 
Systems Neuroscience», vol. II, n. 4 – doi: 10.3389/ 
neuro.06.004.2008. 

LANCASTER, J.L., LAIRD, A.R., EICKHOFF, S.B., MARTI-

NEZ, M.J., FOX, P.M., FOX, P.T. (2012). Automated 
regional behavioral analysis for human brain images. 
In: «Frontiers in Neuroinformatics», vol. VI, Art. 
Nr. 23 - doi: 10.3389/fninf.2012.00023. 

MARR, D. (1982). Vision: A computational investigation 
into the human representation and processing of visu-
al information, Henry Holt and Co., New York. 

NASELARIS, T., KAY, K.N., NISHIMOTO, S., GALLANT, 
J.L. (2011). Encoding and decoding in fMRI. In: 
«Neuroimage», vol. LVI, pp. 400-410. 

NORMAN, K.A., POLYN, S.M., DETRE, G.J., HAXBY, J.V. 
(2006). Beyond mind-reading: Multi-voxel pattern 
analysis of fMRI data. In: «Trends in Cognitive Sci-
ences», vol. X, n. 9, pp. 424-430. 

NÚÑEZ, R., ALLEN, M., GAO, R., RIGOLI, C.M., 
RELAFORD-DOYLE, J., SEMENUKS, A. (2019). What 
happened to cognitive science?. In: «Nature Human 
Behaviour», vol. III, n. 8, pp. 782-791. 

PICCININI, G., MALEY, C. (2010). Computation in physi-
cal systems. In: E.N. ZALTA (ed.), The Stanford ency-
clopedia of philosophy–URL: https://plato.stanford. 
edu/entries/computation-physicalsystems/ 

PICCININI, G., SHAGRIR, O. (2014). Foundations of com-
putational neuroscience. In: «Current Opinion in 
Neurobiology», vol. XXV, pp. 25-30. 

POLDRACK, R.A. (2006). Can cognitive processes be in-
ferred from neuroimaging data?. In: «Trends in 
Cognitive Sciences», vol. X, n. 2, pp. 59-63. 

POLDRACK, R.A. (2010). Mapping mental function to 
brain structure: How can cognitive neuroimaging suc-
ceed?. In: «Perspectives on Psychological Sci-
ence», vol. V, n. 6, pp. 753-761. 

POLDRACK, R.A. (2021). The physics of representation. 
In: «Synthese», vol. CXCIX, n. 1, pp. 1307-1325. 

POLDRACK, R.A., KITTUR, A., KALAR, D., MILLER, E., 
SEPPA, C., GIL, Y.D., PARKER, S., SABB, F.W., BILDER, 
R.M. (2011). The cognitive atlas: Toward a 
knowledge foundation for cognitive neuroscience. In: 
«Frontiers in Neuroinformatics», vol. V, Art. Nr. 
17 – doi: 10.3389/fninf.2011.00017. 

PRICE, C.J., FRISTON, K.J. (2005). Functional ontologies 
for cognition: The systematic definition of structure 
and function. In: «Cognitive Neuropsycholo-
gy», vol. XXII, n. 3-4, pp. 262-275. 

PUTNAM, H. (1967). Psychophysical predicates. In: W. 
CAPITAN, D. MERRILL (eds), Art, mind, and religion, 
University of Pittsburgh Press, Pittsburgh, pp. 37-48. 

RITCHIE, J.B., KAPLAN, D.M., KLEIN, C. (2019). Decod-
ing the brain: Neural representation and the limits of 
multivariate pattern analysis in cognitive neurosci-
ence. In: «British Journal of Philosophy of Sci-
ence», vol. LXX, n. 2, pp. 581-607. 

ROSKIES, A.L. (2021). Representational similarity analy-
sis in neuroimaging: Proxy vehicles and provisional 
representations. In: «Synthese», vol. CXCIX, n. 40, 
pp. 5917-5935. 

SHEPARD, R.N. (1968). Reviewed work: Cognitive psy-
chology by Ulric Neisser. In: «The American Journal 

 



Representations and processes 

 

199 

 

of Psychology», vol. LXXXI, n. 2, pp. 285-289. 
SHEPARD, R.N., CHIPMAN, S. (1970). Second-order iso-

morphism of internal representations: Shapes of states. 
In: «Cognitive psychology», vol. I, n. 1, pp. 1-17. 

ST-YVES, G., NASELARIS, T. (2018). The feature-
weighted receptive field: An interpretable encoding 
model for complex feature spaces. In: «Neu-
roimage», vol. CLXXX, pp. 188-202. 

TURING, A. (1936). On computable numbers, with an 
application to the Entscheidungsproblem. In: «Pro- 
____ 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

ceedings of the London Mathematical Society», vol. 
XLII, pp. 230-265. 

TURING, A. (1950). Computing machinery and intelli-
gence. In: «Mind», vol. LIX, n. 236, pp. 433-460. 

TURNER, J.A., LAIRD, A.R. (2012). The cognitive para-
digm ontology: Design and application. In: «Neu-
roinformatics», vol. X, n. 1, pp. 57-66. 

VIOLA, M. (2017). Carving mind at brain’s joints. The 
debate on cognitive ontology. In: «Phenomenology 
and Mind», vol. XII, pp. 162-172. 


